Analysis Preliminary Exam, Math @ UCSC, Spring 2020

- 1. Suppose that $\{f_n\}$ is a sequence of real-valued functions defined in [0,1] that are continuous and monotonically increasing in [0,1]. And suppose that $\{f_n\}$ converges pointwisely to a function f in [0,1]. Assume that f is continuous in [0,1]. Show that $\{f_n\}$ actually converges to f uniformly in [0,1].
- 2. Suppose that (X, d) is a bounded metric space. Let

$$d(x,A) := \inf\{d(x,a) : a \in A\}.$$

And define

$$d_H(A, B) := \inf\{\epsilon > 0 : A \subset N_{\epsilon}(B) \text{ and } B \subset N_{\epsilon}(A)\},\$$

where

$$N_{\epsilon}(A) := \{ x \in X : d(x, A) < \epsilon \}.$$

Show that d_H is a distance function on the space of all closed subsets in X.

3. Consider the measure space (X, \mathcal{M}, μ) with μ a positive measure. Suppose $\{E_k\}_{k \in \mathbb{N}} \subset \mathcal{M}$ satisfies $\sum_{k=1}^{\infty} \mu(E_k) < \infty$. Let

 $E := \{ x \in \mathbb{R}; x \in E_k \text{ for infinitely many } k \}.$

- (a) Show that $E \in \mathcal{M}$.
- (b) Prove $\mu(E) = 0$.
- 4. Let $f: [0,1] \to \mathbb{R}$ be continuous, and let $g: [0,1] \to \mathbb{R}$ be measurable such that $0 \le g(x) \le 1$. Show that the limit

$$\lim_{n \to \infty} \int_0^1 f(g(x)^n) \, dx \qquad (dx: \text{ Lebesgue measure})$$

exists and compute it.

5. (a) Let X be a normed space and let Y be a Banach space. Show that the set L(X, Y) of all bounded linear operators $A: X \to Y$ is a Banach space.

(b) Show that the set G of all invertible (i.e., bijective) bounded linear operators on the Banach space Y is an open subset of L(Y).

6. Let ℓ^{∞} be the Banach space of all sequences $x = \{x_k\}_{k=1}^{\infty}$ with $||x||_{\infty} = \sup_{k \ge 1} |x_k| < \infty$. Show that there exists a bounded linear functional ϕ on ℓ^{∞} with the property that

$$\phi(x) = \lim_{k \to \infty} x_k$$

whenever $x = \{x_k\}_{k=1}^{\infty}$ is a sequence for which the limit exists. If E denotes the set of all such functionals, describe the set $\{ \|\phi\| : \phi \in E \}$.

- 7. Let $\Omega := \{z \in \mathbb{C} : |z| > 3\}$, $f(z) = \frac{z+1}{(z-2)(z^2+3)}$ and $g(z) = \frac{z^2}{(z-2)(z^2+3)}$. Is there a holomorphic function whose derivative is f(z) on Ω ? Is there a holomorphic function whose derivative is g(z) on Ω ? Justify your answers.
- 8. Suppose that f(z) is an entire function and satisfies $|f(z)| \leq C(1+|z|)^{\frac{1}{2}}$ for all $z \in \mathbb{C}$ and some constant C > 0. Show that f is a constant.