ALGEBRA PRELIMINARY EXAM — SPRING 2023

Problem 1. Prove or disprove: For any group G and any subgroup $H \leq G$ with the index $|G:H| = n < \infty$, there exists a normal subgroup $N \leq G$ such that $N \leq H$ and $|G:N| \leq n!$.

Problem 2. Let G = Sym(5) be the symmetric group on 5 letters and H = Alt(5) the alternating subgroup.

- (a) Count with justification the number of 5-cycles in G.
- (b) Prove or disprove: The *H*-conjugacy class of any 5-cycle $\sigma \in H$ contains exactly 12 elements.
- (c) Prove or disprove: There is a 5-cycle $\sigma \in H$ such that the centraliser of $\langle \sigma \rangle$ in H is equal to the normaliser of $\langle \sigma \rangle$ in H. (Here $\langle \sigma \rangle$ denotes the subgroup generated by σ .)

Problem 3. Consider the subring $R = \{a + bi : a, b \in \mathbb{Z}\}$ of the complex numbers, where $i^2 = -1$.

- (a) Prove that every ideal of R is a principal ideal.
- (b) Prove or disprove: For every prime number p that is congruent to 1 modulo 4, there exist integers a and b such that $p = a^2 + b^2$.

Problem 4. Let V and W be finite-dimensional real inner product spaces.

- (a) Let $T: V \to W$ be a linear map and let $T^*: W \to V$ denote the adjoint map. Prove that $\ker(T^*) = \operatorname{im}(T)^{\perp}$.
- (b) A projection operator is a linear operator $P: V \to V$ satisfying $P^2 = P$. Show that there is a direct sum decomposition:

$$V = \ker(P) \oplus \operatorname{im}(P).$$

(Here $\ker(P)$ and $\operatorname{im}(P)$ denote the kernel and image of P, respectively.)

(c) Show that a projection operator $P: V \to V$ is self-adjoint if and only if the subspaces $\ker(P)$ and $\operatorname{im}(P)$ are orthogonal complements.

Problem 5. Consider the free abelian group \mathbb{Z}^4 . Let $N \subseteq \mathbb{Z}^4$ be the subgroup generated by the five elements

$$\begin{pmatrix} 12\\-12\\24\\0 \end{pmatrix}, \begin{pmatrix} -12\\12\\-12\\12 \end{pmatrix}, \begin{pmatrix} 12\\24\\24\\36 \end{pmatrix}, \begin{pmatrix} 24\\-24\\48\\0 \end{pmatrix}, \begin{pmatrix} 24\\12\\60\\48 \end{pmatrix} \in \mathbb{Z}^4.$$

Describe the quotient abelian group \mathbb{Z}^4/N . More precisely, give a decomposition of \mathbb{Z}^4/N as a direct sum of cyclic groups. Explicitly state the rank, invariant factors and elementary divisors. Be sure to explain your work.

Problem 6. Let A be an $n \times n$ complex matrix.

- (a) Prove or disprove: A is diagonalizable if and only if its minimal polynomial has simple roots.
- (b) Prove or disprove: Every nonzero nilpotent matrix is diagonalizable.
- (c) Prove that the trace tr(A) is equal to the sum of the eigenvalues of A counted with multiplicity.

Problem 7.

- (a) Find the minimal polynomial of $\sqrt{2} + \sqrt{5}$ over \mathbb{Q} .
- (b) Does the field $\mathbb{Q}(\sqrt{2} + \sqrt{5})$ contain any solution to $x^3 5$? Prove that your answer is correct.

Problem 8. Let $K := \mathbb{F}_p(t)$ denote the field of rational functions in the indeterminate t with coefficients in the finite field $\mathbb{F}_p = \mathbb{Z}/p$ with p elements. Let $E := K(\alpha)$ for α a root of the polynomial $f(x) = x^p - x + t$ (in some field extension of K).

- (a) Compute the degree [E:K].
- (b) Prove that E/K is a Galois extension.
- (c) Compute the Galois group $\operatorname{Gal}(E/K)$.

(Hint: It may be helpful to notice that $x^p - x = (x+1)^p - (x+1)$.)

Problem 9. Let *E* be the field of complex rational functions $\mathbb{C}(x_1, x_2, x_3, x_4, x_5)$. Let σ denote the permutation $(x_1, x_2, x_3, x_4, x_5) \mapsto (x_2, x_3, x_4, x_5, x_1)$ and τ the permutation $(x_1, x_2, x_3, x_4, x_5) \mapsto (x_1, x_5, x_4, x_3, x_2)$. Let *K* denote the subfield of rational functions invariant (or symmetric) under τ and σ . How many subextensions $K \subseteq L \subseteq E$ are there? Prove that your answer is correct.