Problem 1. Let p be a prime number and let $G = GL_2(\mathbb{F}_p)$ be the multiplicative group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p .

- (a) Compute with justification the order |G|.
- (b) Count with justification the number of p-Sylow subgroups of G.

Problem 2. Let $G = A_4 = Alt(4)$ be the alternating group on 4 letters.

- (a) Prove or disprove : There is exactly 1 subgroup H of G such that |H| = 4.
- (b) Exhibit with proof a subgroup $K \leq G$ such that $K \neq N_G(K)$ and $N_G(K) \neq G$. Here N_G denotes the normaliser in G.

Problem 3. Consider the subset of the ring \mathbb{C} of complex numbers

$$R = \left\{ a + b\sqrt{5}i : a, b \in \mathbb{Z} \right\}$$

- (a) Prove that R is a subring of \mathbb{C} .
- (b) Prove or disprove : every ideal of R is a principal ideal.

Problem 4. Let $A: \mathbb{Z}^3 \to \mathbb{Z}^3$ be the \mathbb{Z} -module homomorphism given by left multiplication by the matrix

$$A = \begin{pmatrix} 15 & -27 & 0\\ -9 & 45 & 15\\ -9 & 33 & 9 \end{pmatrix}.$$

Construct an isomorphism between the quotient group $\mathbb{Z}^3/\operatorname{Image}(A)$ and a direct sum of cyclic groups.

Problem 5. Let $V = \mathbb{C}^n$ be the standard *n*-dimensional complex vector space.

- (a) Suppose that $u, v \in V$ are nonzero vectors and $c \in \mathbb{C}^{\times}$ is a nonzero scalar. Set x = cu and $y = c^{-1}v$. Prove that $u \otimes v = x \otimes y$ in $V \otimes_{\mathbb{C}} V$.
- (b) Prove the converse of the previous part. That is, if $u, v, x, y \in V$ are nonzero vectors and $u \otimes v = x \otimes y$ in $V \otimes_{\mathbb{C}} V$, then prove that there exists a nonzero scalar c such that x = cu and $y = c^{-1}v$.

Problem 6. This problem concerns the matrix

$$A = \begin{pmatrix} -58 & -100\\ 20 & 47 \end{pmatrix}.$$

Let *M* be the complex vector space of "column vectors" $\begin{pmatrix} x \\ y \end{pmatrix}$ with $x, y \in \mathbb{C}$.

Given a polynomial $f(t) \in \mathbb{C}[t]$, let $f(A) \in Mat_{2,2}(\mathbb{C})$ be the matrix obtained by evaluating f at t = A and set

$$f(t) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = f(A) \begin{pmatrix} x \\ y \end{pmatrix}$$

The right-hand side is normal matrix multiplication. This makes M into a $\mathbb{C}[t]$ -module. (You do not need to prove this.)

- (a) Prove or disprove : there is a nonzero element $v \in M$ such that $t \cdot v = 0$.
- (b) Let N be the $\mathbb{C}[t]$ -module constructed in the same way as M except replace the matrix A by its transpose A^{T} . Prove or disprove : M and N isomorphic as $\mathbb{C}[t]$ -modules.

Problem 7. Let p be a prime number and let G be the Galois group of $X^p - 2$ over \mathbb{Q} . Prove that G is isomorphic to a semidirect product $C_p \rtimes C_{p-1}$.

Problem 8. A field extension K/F is said to be a *simple extension* if K = F(u) for some $u \in K$.

- (a) Let F be a finite field. Prove that every finite extension K/F is a simple extension.
- (b) Let F be an infinite field. Prove that every finite extension K/F which has only finitely many intermediate fields is a simple extension.
- (c) Prove that a finite extension K/F is simple if and only if it has only finitely many intermediate fields.

Problem 9.

- (a) Let $f(X) = X^3 + nX + 2$ where n is an integer. Determine the (infinitely many) values of n for which f is irreducible over \mathbb{Q} . (Be sure to justify your answer.)
- (b) Let $\overline{\mathbb{Q}}$ be the field of algebraic numbers. Prove that $\overline{\mathbb{Q}}/\mathbb{Q}$ is an infinite extension.