Analysis Preliminary Exam, Math @ UCSC, Spring 2023

1. Suppose that $\{f_n(x)\}\$ is a sequence of continuous functions that converges pointwisely to a function f(x) on a compact metric space X. Assume that $\{f_n(x)\}\$ is uniformly equi-continuous, i.e. for any $\epsilon > 0$, there is a $\delta > 0$ such that, for any n,

$$|f_n(x) - f_n(y)| < \epsilon$$

 $x, y \in X$ and $d(x, y) < \delta$. Show that $\{f_n(x)\}$ actually uniformly converges and the limit function f(x) is also continuous.

- 2. Let $f: X \to Y$ be a bijective continuous map, where X is a compact topological space and Y is Hausdorff. Show that f is in fact a homeomorphism. Here is the definition of compactness for this problem: a topological space A is compact if any open cover $\{U_{\alpha}\}$ of A has a finite subcover.
- 3. Suppose that $f:[0,1] \to \mathbb{R}$ is in L^1 and for each $n \in \mathbb{N}$ we define

$$f_n(x) := n \int_{k/n}^{(k+1)/n} f(y) dy$$

for $x \in [k/n, (k+1)/n)$ and $0 \le k \le n-1$. Prove that $f_n \to f$ in L^1 .

4. Let f and g be real-valued integrable functions on a measure space (X, \mathcal{M}, μ) and for any $t \in \mathbb{R}$ define

$$F_t := \{x \in X : f(x) > t\}$$
 and $G_t := \{x \in X : g(x) > t\}.$

Prove that

$$\int_X |f - g| \, d\mu = \int_{-\infty}^\infty \mu \left(F_t \Delta G_t \right) \, dt \,,$$

where $F_t \Delta G_t := (F_t \setminus G_t) \cup (G_t \setminus F_t)$. Note that (X, \mathcal{M}, μ) is an arbitrary measure space.

5. Let X be a Banach space and consider the unit sphere

$$S = \{ \phi \in X^* : \|\phi\| = 1 \}$$

in the dual space X^* . Show that S is not closed in the weak*-topology of X^* by showing that $0 \in X^*$ is an accumulation point of S in the weak*-topology.

6. Let $\{A_{\omega}\}_{\omega\in\Omega}$ be a family of bounded linear operators $A_{\omega}: X \to Y$ where X and Y are Banach spaces. Suppose that for each $x \in X$, $\phi \in Y^*$,

$$\sup_{\omega\in\Omega} |\phi(A_{\omega}x)| < \infty.$$

Show that

$$\sup_{\omega\in\Omega} \|A_{\omega}\|_{L(X,Y)} < \infty.$$

- 7. (a) State Liouville's theorem.
 - (b) Suppose f is entire and such that there exist a constant C > 0 and $p \in \mathbb{N}$ such that $|f(z)| \leq C|z|^p$ for every z with $|z| \geq 1$. Prove that f is a polynomial of degree at most p.
- 8. Evaluate the integrals

$$\int_0^\infty e^{-ax} \cos(bx) \, dx \quad \text{and} \quad \int_0^\infty e^{-ax} \sin(bx) \, dx, \qquad a > 0,$$

by integrating e^{-Az} , $A = \sqrt{a^2 + b^2}$, over an appropriate sector with angle ω with $\cos \omega = \frac{a}{A}$.

Carefully write down any limiting process involved for full credit.