Winter 2022 - Analysis prelim - University of California Santa Cruz

- 1. Suppose that $\{f_n\}$ is a sequence of continuous functions from [0,1], where each $f_n(x)$ is monotone increasing. And suppose that $f_n(x)$ converges to a continuous function f(x) pointwisely on [0,1].
 - (a) Show that $f_n(x)$ in fact uniformly converges to f(x) on [0, 1].
 - (b) Give an example where the uniform convergence fails if the limit function f(x) is not continuous.
- 2. Suppose that X is a metric space with the distance function $d(\cdot, \cdot)$. For a point $x \in X$ and a subset A, let

$$d(x, A) := \inf\{d(x, y) : y \in A\}.$$

(a) Let A and B be two disjoint closed subsets in X. Show that

$$f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)} : X \to [0, 1]$$

is continuous.

- (b) Use (a) to verify that, for a closed subset A and an open subset U such that $A \subset U$, there always exists an open set V such that $A \subset V \subset \overline{V} \subset U$.
- 3. Let (X, Σ, μ) be a finite measure space (i.e., $\mu(X) < \infty$), $\{E_k\}_{k=1}^n$ a collection of measurable sets, and $\{c_k\}_{k=1}^n$ a collection of real numbers. For $E \in \Sigma$, define

$$\nu(E) := \sum_{k=1}^{n} c_k \ \mu(E \cap E_k).$$

- (a) Show that $\nu \ll \mu$.
- (b) Find the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ (i.e. find a function g such that $\int f \, d\nu = \int fg \, d\mu$ for all f).
- 4. (a) Let f and g be absolutely continuous functions on [0, 1]. Show that their product is also absolutely continuous.
 - (b) Give an example of a function on [0, 1] which is uniformly continuous but not absolutely continuous.
- 5. Let X = C([0, 1]) be the Banach space of all continuous complex-valued functions on [0, 1] with the maximum norm. Consider the linear operator $A : X \to X$ defined by

$$(Af)(x) = x \int_0^1 f(y) \, dy, \qquad x \in [0, 1].$$

- (a) Show that A is bounded and determine its operator norm.
- (b) Determine the spectrum of the operator A.

- 6. Let X be a Banach space and $x_0 \in X$ be a nonzero element. Let $X_0 = \lim \{x_0\}$ be the linear span by the element x_0 . Show that there exists a *closed* linear subspace X_1 of X such that X is the direct sum of X_0 and X_1 , i.e., each element $x \in X$ is the unique sum of an element in X_0 and an element in X_1 .
- 7. Let f = u + iv be an entire function such that |u||v| is bounded. Prove that f must be a constant function.
- 8. Prove that

$$\frac{1}{2\pi} \int_0^{2\pi} e^{\cos\theta} d\theta = \sum_{n=0}^\infty \frac{1}{(n!2^n)^2}.$$