GEOMETRY AND TOPOLOGY PRELIMINARY EXAM FALL 2021

Problem [1]:

(a) For real constants c_0, c_1, c_2, c_3 , consider the function $f: S^3 \to \mathbb{R}$ defined by

$$f(x_0, x_1, x_2, x_3) := c_0 x_0^2 + c_1 x_1^2 + c_2 x_2^2 + c_3 x_3^2.$$

This function descends to a function $\overline{f} : \mathbb{R}P^3 \to \mathbb{R}$.

- (i) Suppose $0 < c_0 < c_1 < c_2 < c_3$. Determine the critical points of \overline{f} as well as their critical values.
- (ii) Suppose $0 < c_0 = c_1 < c_2 < c_3$. Determine the critical points of \overline{f} as well as their critical values.
- (b) Let SO(3) be the 3-dimensional rotation group with determinant 1. Let $T : SO(3) \to \mathbb{R}$ denote the trace map $T(A) := \operatorname{Trace}(A)$. Determine the critical points of T as well as their critical values.

Problem [2]: On \mathbb{R}^3 , consider the 1-form $\theta := dz - y \, dx$. Let *H* be the 2-dimensional distribution given by the kernel of θ : $H := \text{Ker } \theta = \{v \in T\mathbb{R}^3 \mid \theta(v) = 0\}.$

- (a) Show that there are no 2-dimensional submanifolds of \mathbb{R}^3 tangent to H.
- (b) Choose vector fields X and Y spanning H at each point of \mathbb{R}^3 . Compute the flows generated by the vector fields X and Y.
- (c) For any smooth function $f \in C^{\infty}(\mathbb{R}^3)$, consider the vector field W given by

$$W := f \frac{\partial}{\partial z} - B,$$

where B is the unique vector field in H such that

$$\iota_B(d\theta)|_H = df|_H,$$

where ι_B denotes the interior product by B. Let $\phi_W(t)$ be the flow generated by W. Show that this flow preserves H, that is, $\phi_W(t)_*(H) = H$, whenever the flow is defined.

Problem [3]:

- (a) Let X be a smooth vector field on a smooth manifold M. Prove or provide a counter-example: If β is a closed form on M, then the Lie derivative $\mathcal{L}_X\beta$ of β is exact.
- (b) Find the Lie derivative of the two-form $\beta(x, y) = (x^k + y^k)dx \wedge dy$ on \mathbb{R}^2 with respect to the vector field $X(x, y) = x^n \partial_y$ for $k, n \in \mathbb{N}$.

Problem [4]: The *n*-torus \mathbb{T}^n is a manifold as well as an abelian group.

- (a) Describe the translation vector fields on \mathbb{T}^n in terms of coordinates on \mathbb{T}^n .
- (b) Show that if a vector field on \mathbb{T}^n commutes with all translation vector fields then it is a translation vector field.

Problem [5]: Describe **two** topologically distinct smooth compactifications of \mathbb{R}^n . By a *smooth compactification* of \mathbb{R}^n we will mean a smooth closed (= compact without boundary) *n*-manifold which contains \mathbb{R}^n (or a diffeomorphic copy thereof) as an open dense submanifold. Be sure to justify your answer.

Problem [6]: The alternating group A_5 on five symbols has the following presentation:

$$A_5 = \langle a, b \mid a^5 = b^2 = (ab)^3 = 1 \rangle.$$

(This is not obvious.)

- (a) Construct a topological space X whose fundamental group is isomorphic to A_5 . Explain your construction carefully.
- (b) Compute the first homology group $H_1(X)$.

Problem [7]: Let (G, *) be a topological group with multiplication $*: G \times G \to G$. Here are two ways to multiply loops in G based at the identity element $e \in G$:

• Use the usual concatenation of loops:

$$(f \cdot g)(s) := \begin{cases} f(2s), & 0 \le s \le 1/2\\ g(2s-1), & 1/2 \le s \le 1. \end{cases}$$

• Use the group structure in G:

$$(f * g)(s) := f(s) * g(s), \qquad 0 \le s \le 1.$$

- (a) Show that for all loops f and g based at e, we have a homotopy of loops $f \cdot g \simeq f * g$. Thus, the above two ways of multiplying loops define the same product structure on $\pi_1(G, e)$.
- (b) Show that $\pi_1(G, e)$ is in fact abelian regardless of whether or not G is abelian.
- (c) Compute $\pi_1(\mathbb{T}^n)$ where \mathbb{T}^n denotes the *n*-torus. Be sure to justify your answer.