Geometry and Topology Prelim, Winter 2020

- **1.** Let $F: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Show that F is necessarily orientation preserving at its regular points, i.e., $F^*dx \wedge dy = f dx \wedge dy$ with $f \geq 0$.
- **2.** Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function with $df \neq 0$ at the origin $0 \in \mathbb{R}^n$ and f(0) = 0. Show that on a sufficiently small neighborhood of the origin there exists a coordinate system (x_1, \ldots, x_n) such that $f(x_1, \ldots, x_n) = x_1$.
- 3. Consider the vector fields

$$v_k = x^k \partial_x + y^k \partial_y$$

on \mathbb{R}^2 , where $k \in \mathbb{Z}_+$.

- (a) Show that $[v_k, v_\ell] = (\ell k)v_{k+\ell-1}$.
- (b) Find the (local) flow of v_k . For which k is the vector field v_k complete?
- (c) Let φ^t be the flow of v_1 . Find the push-forward $\varphi_*^t(v_k)$ and the pull-back $(\varphi^t)^*dx \wedge dy$.
- **4.** Prove that a connected manifold is path-connected.
- **5.** Let

$$A = \{(x,0,0) : x \ge 0\} \cup \{(0,y,0) : y \ge 0\} \cup \{(0,0,z) : z \ge 0\}$$

denote the union of the non-negative coordinate axes in \mathbb{R}^3 and let $M = \mathbb{R}^3 - A$. Compute the fundamental group of M.

- **6.** Let $M := \{(x, y, z) \in \mathbb{R}^3 : z = x^2 y^2\}.$
 - (a) Show that M is a submanifold of \mathbb{R}^3 .
 - (b) Find smooth vector fields X_1 and X_2 on M such that for every $p \in M$, $\{X_1(p), X_2(p)\}$ is an orthonormal basis for T_pM .
 - (c) Compute the Gaussian curvature of M, with respect to the Riemannian metric on M induced by the Euclidean metric on \mathbb{R}^3 , at the origin.
- 7. Let $L: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be an orthogonal transformation and let $f: S^n \to S^n$ denote the restriction of L to the n-sphere. Show that $\deg(f) = \det(f)$.