GEOMETRY AND TOPOLOGY PRELIMINARY EXAM SUMMER 2023

- (1) Prove that a smooth submersion $F: M \to N$ between smooth manifolds is an open map, i.e. for every open set $U \subseteq M$, the image $F(U) \subseteq N$ is open.
- (2) Consider the following subspace of \mathbb{R}^2 :

$$W_c = \{(x, y) \in \mathbb{R}^2 \mid (x^2 - 1)(x - c) = y^2\}.$$

Find all the parameters $c \in \mathbb{R}$ for which W_c is an embedded submanifold of \mathbb{R}^2 .

- (3) Let M be a smooth, compact manifold which admits a nowhere vanishing smooth vector field. Prove that there exists a smooth map $F: M \to M$ that is homotopic to the identity and has no fixed points.
- (4) Let ω be an *n*-form on an *n*-dimensional manifold M. Assume that $\omega_p \neq 0$ at some point $p \in M$. Show that there exist local coordinates x_1, \ldots, x_n near p such that $\omega = dx_1 \wedge \ldots \wedge dx_n$.
- (5) Let $L: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be an orthogonal transformation and let $f: S^n \to S^n$ denote the restriction of L to the *n*-sphere. Show that $\deg(f) = \det(L)$. (Make sure to clearly state what definition of the degree you are using.) When is f orientation preserving/reversing?
- (6) Calculate the fundamental group of the topological space X constructed by deleting a circle from \mathbb{R}^3 .
- (7) Prove or provide a counter-example: There is no continuous map $F: S^2 \to S^1$ such that $F \circ \iota: S^1 \to S^1$ is the identity map, where $\iota: S^1 \hookrightarrow S^2$ is the inclusion of S^1 into S^2 as the equator.