GEOMETRY AND TOPOLOGY PRELIMINARY EXAM WINTER 2022

- (1) Let M be a smooth manifold with the tangent bundle $\pi : TM \to M$. Prove that there exists a smooth vector field X on TM (i.e. $X \in \Gamma^{\infty}(T(TM))$) such that $d_{(p,v)}\pi(X_v) = v$ for every $(p,v) \in TM$ (i.e. $p \in M$ and $v \in T_pM$).
- (2) Let $X = y^2 \frac{\partial}{\partial x}$ and $Y = x^2 \frac{\partial}{\partial y}$ be two vector fields on \mathbb{R}^2 .
 - (a) Prove that each of X and Y is complete.
 - (b) Prove that the vector field X + Y is not complete. (*Hint: consider the integral curve of* X + Y *starting at* $(a, a) \in \mathbb{R}^2$ *for* $a \neq 0$.)
- (3) Let *D* be a distribution in \mathbb{R}^3 spanned by the vectors $X = xy\frac{\partial}{\partial x} + \frac{\partial}{\partial z}$ and $Y = \frac{\partial}{\partial y}$. (a) Find an integral manifold of *D* passing through the origin.
 - (b) Is D involutive?
- (4) (a) Define what it means for a map $f : \mathbb{R} \to \mathbb{R}$ to be analytic.
 - (b) True/False. Prove or give a counterexample. "A non-constant analytic map $f : \mathbb{R} \to \mathbb{R}$ is an open mapping."
- (5) Let $K \subset \mathbb{R}^3$ be a smooth 'knot', i.e. a smoothly embedded image of the circle. Let $\nu(K)$ be its normal bundle, so that $\nu(K) \subset K \times \mathbb{R}^3$ consists of pairs (p, v) such that $p \in K, v \in \mathbb{R}^3, v \perp T_p K$. Define the 'exponential map' $exp : \nu(K) \to \mathbb{R}^3$ by exp(p, v) = p + v.
 - (a) Show that the exponential map is a diffeomorphism onto its image provided that we restrict the normal vectors v to a small enough ball. In other words, show that there is an $\epsilon > 0$ such that the restriction of exp to the set of (p, v) with $||v|| < \epsilon$ is a diffeomorphism onto its image.
 - (b) Show that the exponential map cannot be a global diffeomorphism.
- (6) (a) What is the dimension of $\Lambda^2(\mathbb{R}^{4*})$, the space of constant two-forms on \mathbb{R}^4 ?
 - (b) Let μ be a non-vanishing constant 4-form on \mathbb{R}^4 , for example $\mu = dx \wedge dy \wedge du \wedge dv$ where x, y, u, v are standard linear coordinates. Define a map

$$Q: \Lambda^2 \mathbb{R}^{4*} \to \mathbb{R}, \text{ by } \omega \wedge \omega = Q(\omega)\mu.$$

Show that Q is a non-degenerate quadratic form. Compute its index as a quadratic form. Does the index depend on the choice of μ ?

- (7) Let X denote the 2-dimensional torus with an open disk removed.
 - (a) Compute the homology $H_*(X)$.
 - (b) The boundary of X is a copy of the circle S^1 . Does X retract onto its boundary?

- (8) (a) Let $n \ge 1$, $d \in \mathbb{Z}$ and let $f : S^n \to S^n$ be a degree d map on the *n*-sphere. Let X be the space obtained from S^n by attaching an (n + 1)-disk via the attaching map f. Compute the homology $H_*(X)$.
 - (b) Construct a space Y whose reduced homology is as follows:

$$\widetilde{H}_i(Y) = \begin{cases} \mathbb{Z} & i = 0 \\ \mathbb{Z} \oplus \mathbb{Z} & i = 1000 \\ \mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z} & i = 2000 \\ 0 & \text{otherwise} \end{cases}$$