- 1. Show that the alternating group of degree 5, Alt(5), has no subgroup of order 20.
- 2. Show that every group of order 143 is cyclic.
- 3. Show that every non-zero ideal of the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at a prime p is of the form (p^n) for some $n \ge 0$.
- 4. Let T be the \mathbb{R} -linear map on $V = \mathbb{R}^2$ given by the multiplication with the matrix

$$\left(\begin{array}{cc} 0 & -1 \\ 4 & 2 \end{array}\right).$$

Compute the characteristic polynomial of $T \otimes_{\mathbb{R}} T$ acting on $V \otimes_{\mathbb{R}} V$.

5. Let N be the subgroup of the free abelian group $M = \mathbb{Z}^3$ generated by the following 3 elements:

$$x = \begin{bmatrix} 2\\4\\6 \end{bmatrix}, y = \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \text{ and } z = \begin{bmatrix} 7\\8\\9 \end{bmatrix},$$

and let Q := M/N.

- (a) Compute the rank of Q.
- (b) Compute the invariant factors of Q.
- 6. Let p be a prime number, $F = \mathbb{F}_p$ the field with p elements, and $V = F^4$ the standard 4-dimensional F-vector space. Count the number of 2-dimensional F-linear subspaces in V.
- 7. (a) Determine the Galois group of $x^8 11$ over \mathbb{Q} .
 - (b) Determine the Galois group of $x^8 11$ over $\mathbb{Q}(i)$.
- 8. Let $K \supset E \supset F$ be fields. Prove or disprove:
 - (a) If $K \supset F$ is Galois then $E \supset F$ is Galois,
 - (b) If $K \supset F$ then $K \supset E$ is Galois,
 - (c) If both $K \supset E$ and $E \supset F$ are Galois then $K \supset F$ is Galois.
- 9. Determine whether or not $x^5 4x + 2$ is solvable by radicals.