1. Let \(G = GL(n, \mathbb{C}) \) be the group of all \(n \times n \) invertible matrices with complex entries. Show that \(G \) contains a subgroup \(B \) with the following properties:
 (a) \(B \) is solvable.
 (b) \(G = \cup_{g \in G} gBg^{-1} \), i.e. \(G \) is the union of the conjugates of \(B \).
(Hint: consider the upper triangular matrices in \(G \).)

2. Let \(G \) be a finite group of order \(pqr \) where \(p, q, r \) are distinct primes. Prove that \(G \) is solvable.

3. What is the automorphism group of \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) isomorphic to? Justify your answer.

4. Let \(A \) be a \(n \times n \) complex matrix such that \(A^k \) is the identity matrix for some \(k > 0 \). Prove that \(A \) is diagonalizable.

5. Let \(A = J_6(\lambda) \) be a Jordan block of \(6 \times 6 \) matrix with eigenvalue \(\lambda \).
 (a) Suppose \(\lambda = 0 \). Find the Jordan canonical forms of \(A^2 \) and \(A^3 \).
 (b) Suppose \(\lambda \neq 0 \). Find the Jordan canonical forms for \(A^2 \) and \(A^3 \).

6. Let \(A \) be a real symmetric and positive definite matrix. Prove that the maximal matrix entries are on the diagonal.

7. Let \(I = (2, x) \) be the ideal generated by 2 and \(x \) in the ring \(R = \mathbb{Z}[x] \). Show that the element \(2 \otimes 2 + x \otimes x \in I \otimes_R I \) cannot be written as \(a \otimes b \) for some \(a, b \in I \).

8. (a) Show \((x^d - 1)|(x^n - 1) \) if and only if \(d|n \).
 (b) Let \(\ell \) be a prime and let \(\zeta_\ell \) be a primirive \(\ell \)th root of unity over \(\mathbb{F}_p \) for a prime \(p \). Show that \(\zeta_\ell \in \mathbb{F}_{p^n} \) if and only if \(\ell|p^n - 1 \).
 (c) Find the splitting field of \(x^7 - 1 \in \mathbb{F}_{11}[x] \).

9. Let \(\alpha = \sqrt{2 + \sqrt{2}} \). Show that \(\mathbb{Q}(\alpha) \) is a cyclic Galois extension of degree 4.