Questions in Algebra for Preliminary Exam (Fall 2015)

1. Let G be a group of order p(p+1), where p is a prime. Prove that G has a normal subgroup of either order p or p+1.

2. Let *R* be a commutative ring with 1 and $a \in R$. Prove that *a* is an element of every maximal ideal of *R* iff 1 - ab is a unit for all $b \in R$.

3. Let $D = \mathbb{Z}[\sqrt{5}] = \{m + n\sqrt{5} | m, n \in \mathbb{Z}\}$ — a subring of the field of real numbers and necessarily an integral domain — and $F = \mathbb{Q}[\sqrt{5}]$ its field of fractions. Show the following:

(a) $x^2 + x - 1$ is irreducible in D[x] but not in F[x].

- (b) D is not a unique factorization domain.
- 4. Consider the complex matrix

$$A = \left(\begin{array}{cc} 1 & -1 \\ 2 & 2 \end{array}\right).$$

Find a unitary matrix U and a positive definite hermitian matrix P such that A = UP.

5. Let p be an odd prime number, and consider the set X of 3×3 matrices with entries in the finite field \mathbb{F}_p whose characteristic polynomial is

$$T^3 - T$$
.

- (a) Show that the conjugation-action of $GL_3(\mathbb{F}_p)$ on X is transitive.
- (b) How many elements are there in X?
 - 6. Let A be a complex 3×3 matrix.
- (a) Suppose that A has eigenvalues $\lambda_1, \lambda_2, \lambda_3$. What are the eigenvalues of the second exterior (= alternating) power $\wedge^2 A$?
- (b) Suppose that the linear operators A, $\wedge^2 A$ and $\wedge^3 A$ have trace 2, -1 and -2, respectively. Prove that A is diagonalisable.

7. Let p be a prime number and $r \geq 1$ an integer not divisible by p. Consider the field $V = \mathbb{F}_{p^r}$ as a vector space over the field \mathbb{F}_p . Let $\sigma : V \to V$ be the (\mathbb{F}_p -linear) Frobenius map, $\sigma(x) = x^p$.

Find the Jordan canonical form for σ (after extending the ground field to $\overline{\mathbb{F}}_p$). (*Hint.* You may want to apply the Normal Basis Theorem, which says, that for any finite Galois extension K/F of fields with group G, there exists $x \in K$ such that the G-orbit $\{g.x\}_{g\in G}$ forms an F-basis of K.)

8.

(a) Find the Galois group of the polynomial $x^4 - 3$ over \mathbb{Q} .

(b) Find the Galois group of the polynomial $x^4 - 3$ over \mathbb{F}_5 .

9. True or False (give a proof or counterexample): Every flat finitely generated $\mathbb{Z}/6\mathbb{Z}$ -module is free.