1. Show that every group of order 2016 has a subgroup of order 28.

2. Determine the minimal \(n \in \mathbb{N} \) such that the quaternion group \(Q_8 \) of order 8 is isomorphic to a subgroup of the symmetric group \(\text{Sym}(n) \). (Hint: Consider the resulting action of \(Q_8 \) on \(\{1, 2, \ldots, n\} \) and use that every non-trivial subgroup of \(Q_8 \) contains the unique element of order 2.)

3. Let \(p \) be a prime. Consider the subring \(R \) of \(\mathbb{Q} \) consisting of all fractions \(a/b \) with \(a, b \in \mathbb{Z} \) such that \(b \) is not divisible by \(p \). Show that every non-zero ideal of \(R \) is of the form \(p^kR \) for some integer \(k \geq 0 \).

4. Suppose that \(A \) is a \(5 \times 5 \) complex matrix satisfying
 \[
 A^4 + 4A^2 = 4A^3.
 \]
 (a) What are the possible eigenvalues of \(A \)?
 (b) Determine all possible Jordan canonical forms of \(A \).

5. Prove or disprove: For any integer \(n \geq 1 \), any \(n \times n \) matrix \(B \) over an algebraically closed field \(k \) is diagonalisable, if \(B^r = I_n \) for some integer \(r \geq 1 \).

6. Prove or disprove: Any vector \(\vec{v} \in \mathbb{R}^3 \) is the cross product \(\vec{u} \times \vec{w} \) for some vectors \(\vec{u}, \vec{w} \) in \(\mathbb{R}^3 \).

7. Let \(R \) be a commutative ring with identity. For each of the following, either prove the statement or give a counterexample:
 (a) The tensor product of two injective \(R \)-modules is injective.
 (b) The tensor product of two flat \(R \)-modules is flat.
 (Note: you should prove or disprove these statements from scratch, not apply theorems that render the conclusions trivial.)

8. Let \(\mathbb{C}(x) \) denote the field of rational functions over \(\mathbb{C} \) in an indeterminate \(x \). For each \(a \in \mathbb{C} \), let
 \[
 \sigma_a : \mathbb{C}(x) \longrightarrow \mathbb{C}(x)
 \]
 denote the field automorphism that substitutes \(x \) by \(x + a \). Let \(G \) denote the group of automorphisms \(\{ \sigma_a : a \in \mathbb{C} \} \). Determine with proof the subfield \(\mathbb{C}(x)^G \), the subfield of \(\mathbb{C}(x) \) fixed by \(G \).

9. Let \(\lambda \) be an eigenvalue of a linear transformation \(T \) of a finite dimensional vector space \(V \) over an algebraically closed field \(F \). Let \(r_k = \dim_F (T - \lambda)^k V \), i.e. \(r_k \) is the rank of the linear transformation \((T - \lambda)^k \) on \(V \). Prove that for any \(k \geq 1 \), the number of Jordan blocks of \(T \) corresponding to \(\lambda \) of size \(k \) is \(r_{k-1} - 2r_k + r_{k+1} \).