## Preliminary Exam, Algebra, Spring 2004

**1.** Let G be a finite group and let p be a prime. An element  $x \in G$  is called a p-element if its order equals  $p^n$  for some  $n \in \mathbb{N}_0$ , and x is called a p'-element, if its order is not divisible by p.

Show that for every  $x \in G$  there exist unique elements  $a, b \in G$  such that a is a p-element, b is p'-element, and a = ab = ba.

- **2.** Let G be a group of order 231. Prove that the 11-Sylow subgroup is in the center of G.
  - **3.** (a) Define the notion of a greatest common divisor in a domain with 1.
- (b) Let D be a PID. Prove that for any  $a, b \in D$  not both zero, a greatest common divisor d of a and b exists and that there exist  $x, y \in D$  such that d = ax + by.
- **4.** Let R be a commutative ring, let  $I_1, \ldots, I_n$  be ideals of R, and let P be a prime ideal of R such that P contains  $I_1 \cap \cdots \cap I_n$ . Show that P contains one of the Ideals  $I_1, \ldots, I_n$ .
- 5. Let R be a ring and let M be a left R-module. One calls M noetherian if every submodule of M is finitely generated.

Let U be a submodule of M. Show that M is noetherian if and only if U and M/U are noetherian.

- **6.** Let F be a finite field with 81 elements. Find the number of roots in F of the following polynomials in F[X]:
  - (a)  $f(X) = X^{20} 1$ .
  - (b)  $g(X) = X^9 1$ .
  - (c)  $h(X) = X^{2004} X^4$ .
- **7.** If the field F contains a primitive n-th root of unity, prove that the Galois group of  $X^n a$  is abelian.
- **8.** Let R be a ring, I an ideal of R, and M a left R-module. Let IM be the set of all sums of elements of the form am with  $a \in I$  and  $m \in M$ .
- (a) Show that IM is an R-submodule of M and that M/IM is not only an R-module but also an R/I-module.
- (b) Show that M/IM and  $R/I \otimes_R M$  are isomorphic R/I-modules, where R/I is considered as R/I-R-bimodule in the natural way.
- **9.** Let m, n be positive integers. Prove that the groups  $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$  and  $\mathbb{Z}/d\mathbb{Z}$  are isomorphic, where d is the greatest common divisor of m, n.