1. (5 points). Consider the vector fields
\[X = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \quad \text{and} \quad X = (y + xy^2) \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \]
on \mathbb{R}^2. Do the flows of \(X \) and \(Y \) commute? Justify your answer.

2. (10 points). Let \(X \) be a (complete) vector field on a manifold \(M \) and let \(\alpha \) be a one-form on \(M \) such that \(i_X d\alpha = 0 \). Denote by \(\varphi^t \) the flow of \(X \). Prove that
\[\int_\gamma \alpha = \int_{\varphi^t(\gamma)} \alpha \]
for any closed curve \(\gamma \).

3. (15 points). Let \(\pi: M \to N \) be a submersion with connected fibers and let \(\alpha \) be a closed \(k \)-form on \(M \) such that \(i_X \alpha = 0 \) for every vector \(X \) tangent to a fiber. Prove that there exists a closed \(k \)-form \(\beta \) on \(N \) such that \(\pi^* \beta = \alpha \). Is \(\beta \) necessarily exact, if \(\alpha \) is exact?

4. (15 points). Let \(M \subset \mathbb{R}^3 \) be a closed hypersurface. Show that the curvature of \(M \) is positive at some points of \(M \).

5. (15 points). Let \(\gamma: S^1 \to \mathbb{R}^2 \) be an immersion of the circle into the plane. Recall that the rotation number \(r(\gamma) \) of \(\gamma \) is the degree of the map \(\hat{\gamma}/\|\hat{\gamma}\|: S^1 \to S^1 \). Furthermore, the geodesic curvature of \(k_\gamma \) of \(\gamma \) is defined as follows. Assume that \(\gamma \) is parametrized by arc-length \(s \) so that \(\gamma: [0, l] \to \mathbb{R}^2 \), where \(l \) is the length of \(\gamma \). Then \(k_\gamma(s) \nu(s) = \hat{\gamma}(s) \), where \(\nu(s) \) is the “inner normal” to \(\gamma \) at \(s \) (i.e., the frame \(\{\hat{\gamma}(s), \nu(s)\} \) is positive). Prove that
\[\int_0^l k_\gamma(s) \, ds = 2\pi r(\gamma). \]

6. (10 points). Construct an embedding of \(S^n \times S^k \) into \(\mathbb{R}^{n+k+1} \).

7. (15 points). Let \(M \) and \(N \) be closed even-dimensional manifolds. Prove that \(\chi(M \# N) = \chi(M) + \chi(N) - 2 \), where \(M \# N \) is the connected sum of \(M \) and \(N \). Is the same true when the manifolds are not assumed to be even-dimensional?

8. (15 points). Let \(M \) be a smooth manifold such that \(\pi_1(M) \) is finite. Denote by \(\pi: \tilde{M} \to M \) the universal covering of \(M \). Prove that \(\pi^*: H^*_{dR}(M) \to H^*_{dR}(\tilde{M}) \) is a monomorphism. Is it true that \(\pi^* \) is necessarily an isomorphism?