Algebra Preliminary Exam Instructions:

- 1. Please take a minute to write your name on *every* page of the exam. This is important, because the exams are going to be separated and reassembled during the grading process!
- 2. Please ask if you need more scratch paper.
- 3. Each question is worth five points. Among these points:
 - Two points will measure your *understanding of basic concepts*.
 - One point will measure your computational competence (you will only lose a point for a careless computational error).
 - Two points will assess the clarity and correctness of your proofs and explanations.
- 4. You may not use any outside sources or notes. Feel free to take bathroom/water breaks when you want, but please leave your papers in the room if you leave.

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	5	5	5	5	5	5	5	5	5	45
Score:										

Spring 2007

- 1. (5 points) Let p be a prime and let G be a p-group. Let Z(G) denote the center of G. Show the following:
 - (a) If G has order p^2 then G is abelian.
 - (b) If N is a normal subgroup of G and $N \neq \{1\}$, then $Z(G) \cap N \neq \{1\}$.

- 2. (5 points) Let n > 1 be a natural number. For $i \in \{1, \ldots, n\}$ define H_i as the subset of G := Sym(n) consisting of permutations σ with $\sigma(i) = i$.
 - (a) Prove that H_1, \ldots, H_n are pairwise conjugate subgroups of G.
 - (b) Prove that $N_G(H_i) = H_i$ for all i = 1, ..., n.
 - (c) Prove that H_i is a maximal subgroup of G for all i = 1, ..., n.

- 3. (5 points) Let R be the ring $\mathbb{Z}/2007\mathbb{Z}$.
 - (a) Determine the number of units of R.
 - (b) Is the unit group of R cyclic?

- 4. (5 points) Let V be a \mathbb{F}_q vector space of finite dimension $n \ge 2$, where \mathbb{F}_q is a finite field containing q elements.
 - (a) Let S be the set of ordered pairs (v_1, v_2) , where $v_1, v_2 \in V$, and $Span(v_1, v_2)$ is two-dimensional. Prove that:

_

$$\#S = (q^n - 1)(q^n - q).$$

(b) Prove that the number of two-dimensional subspaces of V is equal to:

$$\frac{(q^n-1)(q^n-q)}{(q^2-1)(q^2-q)}.$$

- 5. (5 points) Let A be an $n \times n$ matrix with entries in the field of complex numbers. Recall that A is called *nilpotent* if there is a positive integer k such that $A^k = 0$. Prove that the following are equivalent:
 - A is nilpotent
 - $\operatorname{Trace}(A^m) = 0$ for all integers $m \ge 0$.

6. (5 points) Consider the diagram of finite-dimensional K-linear spaces (K a field) and K-linear maps between them:

$$0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} \dots \xrightarrow{f_{i-1}} V_i \xrightarrow{f_i} \dots \xrightarrow{f_{n-1}} V_n \xrightarrow{f_n} 0.$$

Assume that $im f_i = ker f_{i+1}$ for all indices *i*. Prove that

$$\sum_{i=1}^{n} (-1)^i \dim V_i = 0.$$

(Hint: use induction on n.)

7. (5 points) Suppose that R is a commutative ring, and M is a R-module.

Suppose that I, J are distinct maximal ideals of R. Suppose that $m, n \in M$. Suppose that, for all $i \in I$, all $j \in J$, we have:

$$i \cdot m = 0$$
 and $j \cdot n = 0$.

Prove that $m \otimes n = 0$ in $M \otimes_R M$.

- 8. (5 points) Let K be the field $\mathbb{Q}(\zeta)$, where ζ denotes a primitive fifteenth root of unity in \mathbb{C} .
 - (a) Draw a diagram, illustrating all of the subfields of K, containments among them, and degrees of extensions. (You don't have to explicitly describe the fields...yet).
 - (b) Describe explicitly the subfield(s) of K, which are quadratic as extension(s) of \mathbb{Q} . In other words, describe them as $\mathbb{Q}(\sqrt{a})$ for some integer(s) a.

- 9. (5 points) Suppose that F is a field, which contains a primitive cube root of unity (in particular, F is does not have characteristic 3). Suppose that K/F is a finite extension of the form K = F(a, b) where $a, b \notin F$, $a^3 \in F$ and $b^3 \in F$, and $b \notin F(a)$.
 - (a) Prove that K is a Galois extension of F, and Gal(K/F) is isomorphic to $(\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$.
 - (b) How many intermediate fields are there, between F and K? Justify your answer.