Algebra Preliminary Exam

Spring 2010

- 1. Let G and H be isomorphic groups. Show that also G/Z(G) and H/Z(H) are isomorphic.
 - 2. Show that every group of order 36 is solvable.
- **3.** Let R be a ring. An element $r \in R$ is called *nilpotent* if there exists a positive integer n such that $r^n = 0$.
 - (a) Show that if r is nilpotent then 1-r is a unit of R.
- (b) Show that if R is commutative then the set N of nilpotent elements of R is an ideal of R.
- (c) Assume that R is commutative and let N be the ideal of nilpotent elements of R. Show that R/N has precisely one nilpotent element.
 - **4.** Let A be a real symmetric matrix. Prove that e^A is positive definite.
- **5.** Let $A, B \in M_n(F)$ such that AB = BA and A, B are diagonalizable. Prove that there is C such that CAC^{-1} and CBC^{-1} are diagonal. Also prove that the result is false if $AB \neq BA$.
- **6.** Let W be a subspace of V invariant under $T \in A(V)$. Denote the restriction of T to W by T_1 and the induced linear transformation of T on V/W by T_2 . Let $m(x), m_1(x)$ and $m_2(x)$ be the minimal polynomials of T, T_1, T_2 , respectively.
 - (a) Prove that $m_1(x)|m(x)$.
 - (b) prove that $m_2(x)|m(x)$.
 - (c) prove that $m(x)|m_1(x)m_2(x)$.
 - (d) If $m_1(x)$ and $m_2(x)$ are coprime, prove that $m(x) = m_1(x)m_2(x)$,
 - (e) Give an example of T for which $m(x) \neq m_1(x)m_2(x)$.
 - 7. (a) State the Fundamental Theorem of Galois Theory.
- (b) Call an extension of fields E/F biquadratic if there are $D_1, D_2 \in F$ such that $E = F(\sqrt{D_1}, \sqrt{D_2})$ and |E:F| = 4. Using the Fundamental Theorem (or otherwise) show that a finite field F does not have any biquadratic extensions.
 - **8.** Let R be a commutative ring.
 - (a) Define a finitely generated (f.g.) free R-module.
- (b) Prove that a f.g. free R-module is *projective*. Ie., if $\varphi: M \to F$ is a surjective morphism of R-modules such that F is f.g. and free, then there is an R-subodule $N \subseteq M$ such that $M \cong N \oplus F$.
- **9.** Let A be a finite abelian p-group (p a prime), with $A_p = \{a \in A \mid pa = 0\}$, $pA = \{pa \mid a \in A\}$.
 - (a) Prove that A_p and A/pA are isomorphic groups.
 - (b) Suppose that $|A_p| = p^n$. Prove that n is the number of elementary divisors of A.