Questions in Algebra for Preliminary Exam (Spring 2015)

- 1. Prove that a group of order 24 without any element of order 6 is isomorphic to S_4 .
- **2.** Let R be a commutative ring with 1. Let I, J be comaximal ideals of R, that is, I + J = R. Prove that for any positive integer n, I^n and J^n are comaximal and $R/(IJ)^n$ is isomorphic to $R/I^n \times R/J^n$.
- 3. Let R be a commutative ring without nonzero nilpotent elements. Prove that if $f(x) = \sum_{i=0}^{m} a_i x^i \in R[x]$ is a zero divisor, then there exists $0 \neq b \in R$ such that bf(x) = 0.
- 4. Suppose that a real linear operator f on a 2-dimensional vector space V has trace 2 and determinant 4. Compute the trace and the determinant of the operator $\operatorname{Sym}^2(f)$.
- 5. Let F be an arbitrary field and $n \ge 1$ an integer. Consider the set of matrices

$$X = \{ A \in M_{n \times n}(F) : A^2 = A \},$$

on which the group $G = GL_n(F)$ acts by conjugation:

$$g.A = gAg^{-1}$$
 for all $g \in G$ and $A \in X$.

- (a) Show that any element A in X is diagonalisable.
- (b) Find (with proof) a set of representatives of the orbit space $G\backslash X$.
- **6.** Let $n \ge 1$ be an integer, A a Hermitian $n \times n$ matrix, and B a skew Hermitian $n \times n$ matrix. Show that the real part of Tr(AB) is zero.
- 7. Let K/F be an algebraic extension of fields. Let R be a ring such that $F \subset R \subset K$. Prove that R is a field.
- 8. Let p be a prime number. Prove that the Galois group of x^p-2 over \mathbb{Q} is isomorphic to the group of 2×2 matrices

$$\left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) : a \in \mathbb{F}_p^{\times}, b \in \mathbb{F}_p \right\}.$$

9. Prove that a module over a ring is projective if and only if it is a direct summand of a free module.