Preliminary Exam, Algebra, January 6, 2010

- 1. (a) Let C be a finite cyclic group of order n. Show that $\operatorname{Aut}(G)$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$, the unit group of the ring $\mathbb{Z}/n\mathbb{Z}$.
- (b) Let G be a group of order pq where q < p are primes such that q does not divide p-1. Show that G is cyclic.
 - (c) Show that the symmetric group Sym(5) has no subgroup of order 15.
- **2.** Let G be a finite group, let H be a normal subgroup of G, and let P be a Sylow p-subgroup of H for some prime p. Show that $G = HN_G(P)$.
- **3.** Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ be the field with 2 elements and let I be the ideal of $\mathbb{F}_2[X]$ generated by the element $f(X) = X^4 + X^3 + 1$. Show that that $\mathbb{F}_2[X]/I$ is a field.
- **4.** Let K be a field and $T: K^3 \to K^3$ a K-linear transformation. Suppose that with respect to the standard basis $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$, the matrix of T is

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- (a) Find the matrix, call it B, that represents T with respect to the basis (1,1,0),(0,1,1),(1,1,1).
 - (b) Show by explicit computation that A and B are similar matrices.
- **5.** Let K be a field, V a finite-dimensional K-vector space, and $V^* = \operatorname{Hom}_K(V, K)$ the dual space.
- (a) Given a basis (v_1, \ldots, v_n) of V, define the *dual basis* of V^* and prove that it is a basis of the dual space.
- (b) Prove that V and its double dual $(V^*)^*$ are isomorphic by an isomorphism that does not depend on any choice of basis.
- **6.** Let K be a field, V a K-linear space, and $f: V \to V$ a K-linear transformation. Suppose that $v_i \in V$ is a family of *non-zero* vectors (I an index set) such that $f(v_i) = \lambda_i v_i$ with scalars $\lambda_i \in K$ such that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Prove that $\{v_i\}_{i \in I}$ is a *linearly independent* set.
 - 7. Let R be a commutative ring.
 - (a) Prove that there is an R-module isomorphism $R/I \otimes_R R/J \cong R/(I+J)$.
- (b) (Note: this is not really related to part (a).) Prove that there is an exact sequence of R-modules:

$$0 \to R/(I \cap J) \to R/I \oplus R/J \to R/(I+J) \to 0.$$

- **8.** (a) Describe all the prime ideals of $\mathbb{C}[x]$.
- (b) Describe all the prime ideals of $\mathbb{R}[x]$.
- **9.** Find, with proof, all the subfields of $\mathbb{Q}(\sqrt[6]{5})$.