1. Recall that the commutator subgroup \(G' \) of a group \(G \) is defined as the subgroup of \(G \) generated by the set of elements of the form \(xyx^{-1}y^{-1} \) with \(x, y \in G \).

(a) Show that if \(f : G \rightarrow H \) is a group homomorphism then \(f(G') \leq H' \).

(b) Show that \(G' \) is a normal subgroup of \(G \) and that \(G/G' \) is abelian.

(c) Show that for a subgroup \(H \) of \(G \) one has:
\[
G' \leq H \leq G \iff H \text{ is normal in } G \text{ and } G/H \text{ is abelian.}
\]

2. Is the unit group of the ring \(\mathbb{Z}/2012\mathbb{Z} \) cyclic? What is the largest possible order of an element of the unit group? Justify your answers.

3. Let \(R := \mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\} \) be the ring of Gaussian integers.

(a) Show that \(1 + i \) is a prime element in \(R \).

(b) Show that the ideal \(I := (1 + i)R \) of \(R \) satisfies \(I^2 = 2R \).

(c) Show that \(R/2R \) is a ring with 4 elements and that it is not isomorphic to \(\mathbb{Z}/4\mathbb{Z} \), to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), or to the field with 4 elements.

4. Let \(L \) be a Galois extension of \(\mathbb{Q} \) of degree 36. Show that there exists a Galois extension \(K \) of \(\mathbb{Q} \) which is contained in \(L \) but different from \(\mathbb{Q} \) and from \(L \).

5. Suppose that \(V \) is a four-dimensional vector space over a field \(F \). There exists a unique bilinear map \(f : \Lambda^2 V \times \Lambda^2 V \rightarrow \Lambda^4 V \) which satisfies
\[
f(x \wedge y, u \wedge v) = x \wedge y \wedge u \wedge v, \text{ for all } x, y, u, v \in V.
\]
Prove that \(f \) is a nondegenerate symmetric bilinear form.

If \(\{e_1, e_2, e_3, e_4\} \) is a basis of \(V \), then the set \(\{e_i \wedge e_j : 1 \leq i < j \leq 4\} \) is a basis of \(\Lambda^2 V \), and the set \(\{e_1 \wedge e_2 \wedge e_3 \wedge e_4\} \) is a basis of \(\Lambda^4 V \).

What is the matrix representing the bilinear form \(f \), with respect to these bases?

6. A matrix \(X \) with entries in a field is called nilpotent if \(X^n = 0 \) for some positive integer \(n \).

(a) Prove that if a matrix is nilpotent, its determinant equals zero. Is the converse true? If not, give a counterexample.

(b) Is the sum of two nilpotent matrices nilpotent? If not, give a counterexample.

(c) Is the product of two nilpotent matrices nilpotent? If not, give a counterexample.

(d) How many 2 by 2 nilpotent matrices are there with entries in \(\mathbb{F}_q \)?
7. Let \(p \) be a prime and let \(n \) be a positive integer. Consider the finite field \(\mathbb{F}_{p^n} \) as a vector space over \(\mathbb{F}_p \), and let \(A \) denote the linear transformation from \(\mathbb{F}_{p^n} \) to itself defined by \(a \mapsto a^p \) (the Frobenius map). Find the rational canonical form of \(A \). (Hint: show that the minimal polynomial of \(A \) is \(x^n - 1 \) by proving that \(A^n = 1 \), but \(A \) satisfies no polynomial of smaller degree.)

8. Let \(R \) be a commutative ring, and let \(M \) and \(N \) be two projective \(R \)-modules. Prove that \(M \otimes_R N \) is a projective \(R \)-module.

9. Find, with proof, all subfields of the splitting field of \(x^4 - 2 \) over \(\mathbb{Q} \).