Algebra Preliminary Exam1/8/2016

- 1. If G is a nonabelian group of order p^3 for some prime p, prove that Z(G) is equal to the commutator subgroup [G, G].
- 2. For any finite group G and prime p, we let $n_p(G)$ denote the number of Sylow psubgroups of G. Now suppose K is a normal subgroup of G, and let P be a Sylow p-subgroup of G.
 - (a) Show that $n_p(G/K)$ divides $n_p(G)$.
 - (b) Prove that $n_p(G/K) = n_p(G)$ if and only if P is a normal subgroup of PK.
- 3. Let R be a commutative ring with 1. Prove that $a \in R$ is nilpotent if and only if $a \in P$ for every prime ideal P of R.
- 4. Prove that every **Z**-module is a submodule of an injective **Z**-module.
- 5. Calculate with proof the Galois group of $x^{17} 3$ over **Q**. Your answer should be in terms of the semidirect product of two abelian groups.
- 6. Show that if A is a square matrix over a field such that $A^2 = A$, then A is similar to a diagonal matrix with only 0's and 1's on the diagonal.
- 7. Let A be a real 3×3 orthogonal matrix. Show that A has 1 or -1 as an eigenvalue.
- 8. Consider the set S of real 4×4 symmetric matrices, on which $G = GL_4(\mathbb{R})$ acts as:

$$(s,g)\mapsto (g^t)sg.$$

How many G-orbits are there in S?

- 9. Suppose that T is a linear operator on a 2-dimensional \mathbb{F}_5 -vector space, and that the trace and the determinant of T are both equal to 1.
 - (a) Prove or disprove: T is diagonalisable over \mathbb{F}_5 .
 - (b) Compute the trace of $\text{Sym}^2 T$.