Algebra Preliminary Exam, Winter 2019

1. Let p < q be primes, $n \ge 0$ an integer and G a group of order pq^n . Show that G is solvable.

2. Let G be a non-trivial finite group and p a prime. Suppose that every subgroup $H \neq G$ has index divisible by p. Prove that the center of G has order divisible by p.

3. Let \mathfrak{p} and \mathfrak{q} be nonzero prime ideals in a PID *R*. Is it possible to have a proper inclusion $\mathfrak{p} \subsetneq \mathfrak{q}$? Carefully justify your answer.

4. Let $V = \mathbb{R}^4$ be the standard 4-dimensional real vectorspace. Prove or disprove: For every element $\omega \in \bigwedge_{\mathbb{R}}^2 V$, there exist $v_1, v_2 \in V$ such that $\omega = v_1 \wedge v_2$.

5. Let N be the subgroup of the free abelian group $M = \mathbb{Z}^3$ generated by the following 3 elements:

$$x = \begin{bmatrix} 4\\8\\-4 \end{bmatrix}, y = \begin{bmatrix} 0\\-12\\12 \end{bmatrix}, \text{ and } z = \begin{bmatrix} 10\\40\\10 \end{bmatrix},$$

and let Q := M/N.

- (a) Compute the rank of Q.
- (b) Compute the invariant factors of Q.

6. Prove or disprove: Let V be a complex vectorspace, T a \mathbb{C} -linear automorphism of V, and W a \mathbb{C} -linear subspace of V stable under T. Then T restricts to an automorphism of W.

7. Let $\zeta_8 \in \mathbb{C}$ be a primitive 8-th root of unity. Determine the number of fields $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}(2^{\frac{1}{4}}, \zeta_8)$, such that F/\mathbb{Q} is Galois.

8. Let $f(x) = x^6 + \ldots + x + 1 \in \mathbb{Q}[x]$ and let $\zeta_7 \in \mathbb{C}$ be a primitive 7-th root of unity. Let $K = \mathbb{Q}(\zeta_7)$ and let G be the Galois group of K/\mathbb{Q} . Consider the ring $R = \mathbb{Z}[\zeta_7]$ and the ideal I = (3) in R. Prove that the ideal I is maximal in R. (Hint: Consider the ring $\mathbb{Z}[x]/(3, f(x))$.) The group G acts on R and I, and thus G acts on the finite field F = R/I. Describe the explicit isomorphism between G and the Galois group of F over its prime subfield induced by the action of G on R/I.

9. Let $f(x) = x^4 + 5x + 5 \in \mathbb{Q}[x]$. The polynomial f has discriminant equal to $5 \cdot 55^2$. Prove that the Galois group of f over \mathbb{Q} is not a subgroup of A_4 .