PRELIMINARY EXAMS IN ANALYSIS 2000 FALL

1. Suppose that X is a subset of the reals. Then X is said to be G_{δ} if it is an intersection of a countable number of open sets of the reals. Show that an intersection of a countable number of dense G_{δ} sets in the reals is again a dense G_{δ} set in the reals. (Hint: Baire Category Theorem)

2.

- a. Suppose that X is a subset of the reals. Then X is said to be connected if there does not exist disjoint open sets U_1, U_2 such that $X = (X \cap U_1) \bigcup (X \cap U_2)$, where both $X \cap U_1$ and $X \cap U_2$ are nonempty. Show that a subset of the reals is connected if and only if it is an interval.
- b. Suppose that X is a subset of the reals. Then X is said to be totally disconnected if, for any open interval (a, b), $X \cap (a, b)$ is not connected. Show that the Cantor set is a totally disconnected subset in the reals.
- 3. Let A be a measurable set in R^2 . Prove that A has measure zero if and only if almost all sections $A_y = \{x : (x, y) \in A\}$ has measure zero.

4.

- a. Give an example of a sequence of continuous functions on (0,1) which converge pointwise to a function, but do not converge in L_2 .
- b. Prove that if a sequence of continuous functions on (0,1) converge uniformly to a function, then they converge to that function in L_2 .

5.

a. Compute

$$\frac{1}{2\pi i} \int_C \frac{dz}{sin(1/z)}$$

where C is the circle |z| = 1/3 with positive orientation.

b. Compute the Fourier transform of the Gaussian distribution $e^{-\frac{x^2}{2}}$, i.e.

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} e^{ixy} dx$$

given

$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} = \sqrt{2\pi}.$$

Typeset by AMS-TEX

6. Suppose that Ω is a bounded region in the complex plane C. And suppose that $\{f_n\}$ is a sequence of functions which are continuous on $\bar{\Omega}$ and holomorphic in Ω . Show that if $\{f_n\}$ converges uniformly on $\partial\Omega$, then $\{f_n\}$ uniformly converges on $\bar{\Omega}$.

7. Write

$$Tf(x) = \int_0^x f(s)ds.$$

- a) Show that T defines a bounded linear operator on the Banach space $\mathbb{C}[0,1]$, endowed with its usual norm.
 - b) Show that this operator on C[0,1] is compact.

8

a. Let H be a Hilbert space over the reals and let $T \in L(H)$ be a bounded linear operator on H. Prove that, if T is invertible that is $T^{-1} \in L(H)$, then so is T^* and

$$(T^*)^{-1} = (T^{-1})^*.$$

b. Let H be a Hilbert space over the reals and let $T \in L(H)$ be a bounded linear operator on H. Prove that both T^*T and TT^* are positive operators on H.