Analysis Prelim, Fall 2008

1 (10 points). Let S be a connected subset of the real numbers. Prove (using only the definition of connectedness) that if a and b are in S and a < c < b then also $c \in S$.

2 (10 points). Consider the space $X = [0, 1] \times [0, 1] \times \cdots$ (the countablyinfinite product of [0, 1] with product topology). An element of X may be thought of as a sequence $\{x_n\}_{n=1}^{\infty}$ with each $x_n \in [0, 1]$. Show that the function from X to \mathbb{R} defined by

$$\{x_n\} \mapsto \sum_{n=1}^{\infty} 2^{-n} x_n$$

is continuous.

3

- (a) (10 points). Prove that the set of continuous compactly supported functions is dense in $L^p(\mathbb{R})$ for $1 \leq p < \infty$. (You may use Urysohn's lemma in the proof.)
- (b) (10 points). Prove that every function $f \in L^p(\mathbb{R})$ is continuous in the mean, i.e., for any $\epsilon > 0$ there is a $\delta > 0$ such that for $|t| < \delta$

$$\int_{-\infty}^{\infty} |f(x+t) - f(x)|^p \, dx < \epsilon.$$

4 (10 points). Construct a monotone function on [0, 1] which is discontinuous at every rational point.

5 (10 points). Let $T: C([0, 1]) \to C([0, 1])$ be defined by

$$Tf(x) = \int_0^x f(t) \, dt.$$

Prove that T is a compact operator, i.e., the image of the unit ball is precompact.

6 (15 points). Let f be a compactly supported, infinitely differentiable function on \mathbb{R} such that $\int_{-\infty}^{\infty} f(x)x^n dx = 0$ for all integers $n \ge 0$. Prove that $f \equiv 0$. (Hint: Pass to the Fourier transform of f.)

7 (10 points). Evaluate the following integral:

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$$

8 (15 points). Let f_n be a sequence of holomorphic functions on a domain D. Show that if $f_n(z)$ converges uniformly on each compact subset of D, then so does $f'_n(z)$.