10/11/2013

Please state any theorem you use. Good Luck !!

- 1. Show that every closed subset of a compact topological space is compact.
- 2. Let $S \subseteq \mathbb{R}^2$ be the topologist's sine curve,

$$S = \left\{ x \times \sin(\frac{1}{x}) \, : \, x \in (0, 1] \right\}.$$

Determine the closure \overline{S} and show that \overline{S} is connected.

- 3. Examine whether the following statements are true for a measure μ on a measurable space (X, Λ) . Give a proof or a counter-example.
 - (a) Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ be measurable sets. Then

$$\lim_{n \to \infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n).$$

(b) Let $B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots$ be measurable sets. Then

$$\lim_{n \to \infty} \mu(B_n) = \mu(\bigcap_{n=1}^{\infty} B_n).$$

Note: We do not assume that μ is finite.

- 4. Show that for every nonnegative Lebesgue integrable function $f:[0,1] \to \mathbb{R}$ and every $\epsilon > 0$ there exists $\delta > 0$ such that for each measurable set $A \subseteq [0,1]$ with $m(A) < \delta$ it follows that $\int_A f(x) dx < \epsilon$.
- 5. Suppose *H* is a Hilbert space. Show that, if a sequence x_n weakly converges to x in *H* and $||x_n|| \to ||x||$, then x_n strongly converges to x in *H*.
- 6. Suppose X and Y are Banach spaces and $T: X \to Y$ is a bounded linear operator. Show that $R(T) = N(T^*)^{\perp}$ if the range R(T) is closed. Recall that the annihilator space is as defined $M^{\perp} := \{ y \in Y : \psi(y) = 0 \text{ for all } \psi \in M \}, M \subseteq X'.$
- 7. Prove the Casorati-Weierstrass Theorem: Let U be a neighborhood of an essential singularity c of a holomorphic f function on $U \setminus \{c\}$. Show that $f(U \setminus \{c\})$ is dense in \mathbb{C} .
- 8. Show that if f(z) is an entire non-zero function, then $f(z) = e^{g(z)}$ for some entire function g(z).