Analysis Preliminary Exam, Math @ UCSC, Fall 2016

1. Let $C[0,1] = \{f : [0,1] \rightarrow \mathbb{R} : f \text{ is continuous on } [0,1]\}$ with the norm

$$||f||_{C[0,1]} = \max\{|f(x)| : x \in [0,1]\}.$$

Similarly, let $C^1[0,1] = \{f : [0,1] \to \mathbf{R} : f \text{ and } f' \text{ are all continuous on } [0,1] \}$ with the norm

$$||f||_{C^{1}[0,1]} = \max\{|f(x)| + |f'(x)| : x \in [0,1]\}.$$

Show that a bounded subset in $C^{1}[0, 1]$ is pre-compact in C[0, 1].

- 2. Show that there is no continuous function from [0, 1] into the Cantor set, except the constant functions.
- 3. (a) Let f_n be a sequence of measurable functions that converges in measure to f. Prove that there exists a subsequence f_{nk} which converges almost everywhere.
 (b) Give an example of a sequence f_n of measurable functions converging in measure, which do not converge almost everywhere.
- 4. (a) Let f be an integrable function on [a, b]. Show that the function F(x) = ∫_a^x f(t) dt is absolutely continuous.
 (b) Let g be absolutely continuous and monotonically increasing. If E is a set of measure zero, then q(E) has also measure zero.
- Let V be a normed vector space. Prove that if x₀ ∈ V and x₀ ≠ 0, then there exists a continuous linear functional φ ∈ V* such that
 (a) φ(x₀) = ||x₀||; (b) ||φ|| = 1. Moreover, prove that

$$||x_0|| = \sup_{\phi \in V^*, ||\phi||=1} |\phi(x_0)|.$$

- 6. Show that $L^{2}[0,2]$ is a set of first category in $L^{1}[0,2]$.
- 7. Let $f_n(z)$ be a sequence of functions holomorphic in the connected open set Ω of the complex plane **C** and assume they converge uniformly on every compact subset of Ω . Show that the sequence of derivatives $f'_n(z)$ also converges uniformly on every compact subset of Ω .
- 8. Let f(z) be holomorphic in $|z| \leq R$ with $|f(z)| \leq M$ on |z| = R for some M > 0. Show that

$$|f(z) - f(0)| \le \frac{2M|z|}{R}$$
.

Moreover, use this to give a proof of Liouville's theorem.