SPRING 2000

 $\begin{array}{c} {\rm Mathematics~Analysis~Preliminary~Exam} \\ {\rm June~9th,~2000} \end{array}$

1. Prove that every compact Hausdorff space is regular. ("Regular" means a closed set and a point not in that set can be separated by open sets.)

2. Let μ be a σ -finite positive measure on Borel sets in \mathbb{R} . Suppose that

$$L^1(\mathbb{R},\mu) \subset L^\infty(\mathbb{R},\mu).$$

Show that there exisits a constant c>0 such that if A is a Borel set with $\mu(A)>0$ then automatically $\mu(A)\geq c$.

3. Prove that

$$\mu(\{x: |f(x)| > s\}) \le \frac{1}{s^p} \int_X |f|^p d\mu,$$

where (X, Λ, μ) is a measure space and p > 0.

4. Let $\lambda > 1$. Show that the equation

$$\lambda - z - e^{-z} = 0$$

has exactly one solution in the right half plane $\{z|Re(z)>0\}.$

5. Let $u:\mathbb{C}\to\mathbb{R}$ be a harmonic function such that $u(z)\geq 0$ for all $z\in\mathbb{C}$. Prove that $u\equiv \mathrm{const.}$

6. Let E and F be Hilbert spaces and let $A:E\to F$ be a linear operator that takes every convergent sequence to a weakly convergent sequence. Prove that A is bounded.

Hint: Show that for an unbounded operator A, there exists a sequence $f_n \to 0$ such that $||Af_n|| \to \infty$. Then use the Banach-Steinhaus theorem to arrive to a contradiction.

7. Let f be an entire function which is also L^2 . Prove that $f \equiv 0$.

Hint: Integrate $|f|^2$ over the disc of radius R in polar coordinates and express the result in terms of the Taylor expansion of f.