Algebra Preliminary Exam

June 10, 2005

- 1. (a) Define a composition series for a finite group G.
- (b) Prove that if $n \ge 5$ then the symmetric group S_n has a unique composition series. (You may assume known that $Z(S_n) = 1$ if $n \ge 5$.)
- 2. Let G be a finite group and p a prime number. Suppose that P is a p-sylow subgroup of G and N is a normal subgroup of G. Prove the following
 - (a) $P \cap N$ is a p-Sylow of N.
 - (b) PN/N is a p-Sylow of G/N.
- 3. Let R be a domain and D a multiplicative subset of R (not containing zero element).
 - (a) Define the localization $D^{-1}R$.
 - (b) If R is a PID, prove that $D^{-1}R$ is also a PID.
- 4. (a) Find all possible Jordan canonical forms for a matrix whose characteristic polynomial is $(x-3)^2(x+4)^3$. Indicate which of these forms is the matrix of a cyclic transformation.
- (b) Let V be a complex vector space of dimension 6 and let τ be a linear operator on V which has characteristic polynomial $(x-\alpha)^6$. If the rank of the operator $\tau \alpha I_V$ is two what are the possible Jordan forms for τ ?
- 5. (a) Let V be a finite dimensional vector space over a field \mathbb{F} and let $\sigma: V \to V$ be a linear transformation. Define what it means for σ to be diagonalizable.
- (b) Let V and W be a finite dimensional vector spaces over a field \mathbb{F} and assume that $\sigma: V \to V$ and $\tau: W \to W$ are diagonalizable linear tranformations. Prove that $\sigma \otimes \tau: V \otimes_{\mathbb{F}} W \to V \otimes W$ is diagonalizable. Furthermore, prove if the eigenvalues of σ are $\alpha_1, \alpha_2, \ldots, \alpha_s$ and the eigenvalues of $\sigma \otimes_{\mathbb{F}} \tau$ are $\alpha_i \beta_j, 1 \leq i \leq s, 1 \leq j \leq t$.
- 6. Let V be a finite dimensional vector space over the field \mathbb{F} .
- (a) Let $B: V \times V \to \text{be a function}$. Define what it means for B to be a non-degenerate alternating form.
- (b) Assume that $B: V \times V \to \mathbb{F}$ is an non-degenerate alternating form and let \overline{v} be a non-zero vector from B and $c \in \mathbb{F}$. Define $\tau_{\overline{v},c}: V \to V$ by

$$\tau_{\overline{v},c}(\overline{w}) = \overline{w} - cB(\overline{w},\overline{v})\overline{v}$$

Prove that $\tau_{\overline{v},c}$ is an isometry of (V,B) which fixes every vector in \overline{v}^{\perp} .

- 7. Let M be a finitely generated module over an integral domain.
- (a) Prove that $x_1, ..., x_n \in M$ are linearly independent if and only if $\bar{x}_1 = x_1 + \text{Tor}(M), ..., \bar{x}_n = x_n + \text{Tor}(M) \in M/\text{Tor}(M)$ are linearly independent.
 - (b) Prove or disprove that M and M/Tor(M) have the same rank.
- 8. Let n be a positive integer.
- (a) Prove that $\mathbb{Q}(\xi_n)$ is a Galois extension of \mathbb{Q} and determine the corresponding Galois group where $\xi_n = e^{2\pi i/n}$.
 - (b) Prove that $2^{1/5}$ is not contained in $\mathbb{Q}(\xi_n)$ for any n.
- 9. Determine the Galois group of $f(x) = x^5 6x + 3$ over \mathbb{Q} .