Analysis Prelim, Spring 2008

1 (5 points). Show that the set of rational numbers is not the intersection of countably many open subsets of the set of real numbers with its usual topology.

2 (10 points). Prove that if X and Y are compact metric spaces then so is $X \times Y$.

3 (10 points). Let (X, μ) be a measure space with $\mu(X) < \infty$. Prove that $L^p(X, \mu) \subset L^q(X, \mu)$ whenever $1 \leq q and that the inclusion is continuous.$

- 4
- (a) (10 points). Let $f: [0, 1] \to \mathbb{R}$ be an absolutely continuous function and let $E \subset [0, 1]$ be a Lebesgue measurable set. Prove that f(E)is Lebesgue measurable.
- (b) (10 points). Does the assertion of part (a) remain correct if f is just a continuous function? Give a proof or construct a counterexample.

5 Let $T: C([0, 1]) \to C([0, 1])$ be defined by

$$Tf(x) = \int_0^x f(t) \, dt.$$

- (a) (5 points). Prove that T is a bounded operator and find ||T||.
- (b) (10 points). Find the spectral radius and the spectrum of T.

6 Recall that $l_{\infty}(\mathbb{C})$ is the Banach space formed by bounded sequences $\{a_n\} = (a_1, a_2, ...)$ of complex numbers, equipped with the norm $||\{a_n\}||_{\infty} = \sup_n |a_n|$, and that $l_1(\mathbb{C})$ is the Banach space of sequences $\{a_n\}$ of complex numbers such that the sum $\sum_n |a_n|$ converges, equipped with the norm $||\{a_n\}||_1 = \sum_n |a_n|$.

- (a) (10 points). Prove that $l_1(\mathbb{C})$ is separable, but that $l_{\infty}(\mathbb{C})$ is not.
- (b) (5 points). Prove that $l_1(\mathbb{C})^* = l_\infty(\mathbb{C})$.
- (c) (10 points). Prove that $l_{\infty}(\mathbb{C})^* \neq l_1(\mathbb{C})$.

7 (5 points). Evaluate

$$\int \cot^2(\pi z) dz$$

over the circle with center 0 and radius 1/2, described once counterclockwise.

8 (10 points). Let $H = \{x \in \mathbb{C} : \Im(z) > 0\}$ and let $\overline{H} = H \cup \mathbb{R}$ be its closure. Let f be a bounded and continuous function in \overline{H} , which is holomorphic in H and such that f(z) is real for all $z \in \mathbb{R}$. Prove that f is constant.