Please state any theorem you use. Good Luck!!

1. Let J be a countably infinite index set. Show that $X = [0, 1]^J$ with the product topology is metrizable.

2. Let X be a compact Hausdorff space. Show that if K and L are closed disjoint subsets of X, then there exists open disjoint subsets $U \supseteq K$ and $V \supseteq L$.

3. Let (X_1, Λ_1, μ_1) and (X_2, Λ_2, μ_2) be two σ-finite measure spaces. Let $X = X_1 \times X_2$ and Λ be the σ-algebra generated by all the rectangles $A \times B$ with $A \in \Lambda_1$, $B \in \Lambda_2$.
 Suppose that Φ and Ψ are two measures defined on Λ such that
 \[
 \Phi(A \times B) = \Psi(A \times B) = \mu_1(A)\mu_2(B), \quad A \in \Lambda_1, B \in \Lambda_2.
 \]
 Show that $\Phi = \Psi$.

4. Show the generalized Hölder inequality
 \[
 \left(\int |fg|^r \, dm\right)^{\frac{1}{r}} \leq \left(\int |f|^p \, dm\right)^{\frac{1}{p}} \cdot \left(\int |g|^q \, dm\right)^{\frac{1}{q}}
 \]
 for
 \[
 \frac{1}{p} + \frac{1}{q} = \frac{1}{r} \quad \text{and} \quad p, q, r > 0.
 \]

5. Show that $\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2}$.

6. Let f be continuous on a domain $\Omega \subseteq \mathbb{C}$ and assume that $\int_T f(z) \, dz = 0$ for each triangle $T \subset \Omega$. Show that f is holomorphic.

7. Let $T : \ell^2 \to \ell^2$ be defined by $T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$ (right shift operator).
 (a) Show that T has no eigenvalues.
 (b) Show that $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$.
 (c) Determine all $\lambda \in \sigma(T)$ for which the range of $T - \lambda I$ is not dense in ℓ^2.

8. Let C be a convex set in a real normed linear space X such that $0 \in C$. Show that for each $x_0 \notin C$ there exists a continuous linear functional F such that $F(x) \leq F(x_0)$ for all $x \in C$.