Analysis Preliminary Exam, Math @ UCSC, Spring 2015

1. Suppose that $f_n(x)$ uniformly converges to f(x) on the interval [a, b]. Assume also that, for $x_0 \in (a, b)$,

$$\lim_{x \to x_0} f_n(x) = a_n$$

for each n. Show that $\lim_{x\to x_0} f(x)$ exists and

$$\lim_{x \to x_0} f(x) = \lim_{n \to \infty} a_n$$

i.e.

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x).$$

- 2. Suppose $f_n(x)$ is a sequence of continuously differentiable functions on a finite interval [a, b]. Assume $f_n(x)$ and the derivatives $f'_n(x)$ are uniformly bounded on the interval [a, b]. Show that there always exists a subsequence of $f_n(x)$ that uniformly converges on the interval [a, b].
- 3. Construct a function such that each set $\{f(x) = \alpha\}$ is Lebesgue measurable for any $\alpha \in \mathbb{R}$, but the set $\{f(x) > 0\}$ is not Lebesgue measurable.
- 4. Show that if $\mu(E) < \infty$ and a sequence of measurable functions $f_n \to f \in L^1_{\mu}(E)$ a.e. on E as $n \to \infty$, then the following are equivalent:

(1) f_n are uniformly integrable, namely, for any $\epsilon > 0$ there exists $\delta = \delta(\epsilon)$ such that $\int_{E \cap \{|f_n| \ge \delta\}} |f_n| \le \epsilon$;

- (2) $\int_{\mathcal{R}} |f_n f| \to 0;$
- (3) $\int_E |f_n| \to \int_E |f|.$
- 5. Let X be a Banach space with norm $\|\cdot\|$. Assume that there is a second norm $\|\cdot\|_2$ defined on X under which X is also complete and that we have $\|x\| \leq \|x\|_2$ for all $x \in X$. Show that there exists c > 0 such that $\|x\|_2 \leq c\|x\|$ for all $x \in X$.
- 6. Let X be a reflexive Banach space and $Y \subset X$ be a closed subspace. Show that Y as a Banach space is also reflexive.
- 7. Let f be holomorphic and nonzero on $\Omega = \mathbb{C} \setminus \{0\}$ and assume that

$$\int_{|z|=1} \frac{f'(z)}{f(z)} \, dz = 0.$$

Show that f(z) possesses a holomorphic logarithm on Ω .

8. Let f_n be a sequence of entire holomorphic functions converging uniformly on every compact subset of $\mathbb{C} \setminus \mathbb{R}$. Assume in addition that

$$|f_n(z)| \le \frac{1}{|\mathrm{Im}(z)|^{1/2}}$$

for all $z \in \mathbb{C} \setminus \mathbb{R}$ and all n. Show that the limit function f is entire and that the convergence $f_n \to f$ is uniform on every compact subset of \mathbb{C} .