Spring 2018 - Analysis prelim - Friday, June 8, 9am-2pm University of California Santa Cruz

- 1. Suppose $f_n \to f$ uniformly and $\lim_{x\to x_0} f_n(x)$ exists for every n. Then $\lim_{x\to x_0} f(x)$ exists and equals $\lim_{n\to\infty} \lim_{x\to x_0} f_n(x)$.
- 2. Let $\{f_n\}$ be a sequence of twice differentiable functions on [0,1] such that $f_n(0) = f'_n(0) = 0$ for all n and such that $|f''_n(x)| \leq 1$ for all n and all $x \in [0,1]$. Show that there exists a subsequence of $\{f_n\}$ which converges uniformly on [0,1].
- 3. (a) Show that if $f \in L^1(\mathbb{R})$ and f is uniformly continuous, then $\lim_{x\to\infty} f(x) = 0$.
 - (b) Does the conclusion still hold without assuming uniform continuity? Justify your answer.
- 4. Let *m* denote Lebesgue measure on \mathbb{R} . Let $f_n : \mathbb{R} \to \overline{\mathbb{R}}$ be a sequence of measurable functions such that $f_n \to f$ in measure¹. Suppose there is an integrable function *g* such that $|f_n(x)| \leq g(x)$ for a.e. $x \in \mathbb{R}$.
 - (a) Show that $|f(x)| \leq g(x)$ for a.e. $x \in \mathbb{R}$.
 - (b) Show that $\lim_{n\to\infty} \int_{\mathbb{R}} |f_n f| = 0.$
- 5. Let X be a Banach space and K be a compact linear operator on X. Assume (for simplicity) that A = I + K has a trivial nullspace. Show that the range of A is closed.
- 6. Let X and Y two Banach spaces. A sequence of bounded linear operators $A_n \in L(X, Y)$ is said to converge weakly to a linear operator A (from X to Y) if for all $x \in X$ and all $\phi \in Y^*$ the sequence $\phi(A_n x)$ converges to $\phi(Ax)$. Assuming A_n converges weakly to A, show that $\sup_n ||A_n|| < \infty$ and that the operator A is bounded.
- 7. (a) State Rouché's theorem.
 - (b) Prove that any polynomial with complex coefficients $P(z) = \sum_{k=0}^{n} a_k z^k$ of degree $n \ (a_n \neq 0)$ has exactly n roots, and give an estimate on the radius of the disk $D_R(0)$ containing all roots.
- 8. Show using residue theory that for every $\xi \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x\xi}}{\cosh(\pi x)} \, dx = \frac{1}{\cosh(\pi\xi)}.$$

Justify rigorously any limiting process involved.

 f_n converges to f in measure if for every $\varepsilon > 0$, $\lim_{k \to \infty} m(\{x : |f_n(x) - f(x)| > \varepsilon\}) = 0$