PRELIMINARY EXAMINATION 2005 DECEMBER 2

- 1. Let X be a metric space, and let A and B be disjoint closed subsets in X. Show that there is a continuous function $f: X \to [0,1]$ such that f = 0 on A and f = 1 on B.
- 2. Let X be a complete metric space and $\{f_{\alpha}\}$ be a collection of real-valued continuous functions on X. Suppose that, for each $x \in X$,

$$\sup_{\alpha} f_{\alpha}(x) < \infty.$$

Show that there is an open subset $U \subset X$ and a number M > 0 such that

$$\sup_{\alpha} f_{\alpha}(x) < M, \forall x \in U.$$

- 3. Let V be a normed vector space and W a closed subspace of V. Suppose that $x_0 \in V$ and $\phi(x_0) = 0$ for all continuous linear functionals ϕ whose kernels contain W. Show that $x_0 \in W$.
 - 4. Let V be a Banach space, and for a > 0 let

$$B_a = \{x^* \in V^* : ||x^*|| \le a\}.$$

Prove that B_a is also closed in the weak* topology.

5. Evaluate the intregral

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx.$$

6. Let f be an entire analytic function and n a positive integer. Suppose that

$$\frac{f(z)}{1+|z|^n}$$

is bounded. Show that f is a polynomial of degree at most n.

- 7. Suppose that $f_n \to f$ in $L^1(mu)$ and $f_n \to g$ a. e. (μ) . What can you say about the relation between f and g? Justify your answer!
 - 8. Show that if $f \in L^2(0,1)$ then the function

$$g(x) = \frac{1}{x} \int_0^x f(y) dy$$

belong to $L^1(0,1)$.