1/20/2012

Please state any theorem you use. Good Luck !!

- (a) Let D ⊆ ℝⁿ be an open set and S ⊆ D be a subset which has no accumulation points in D. Prove that S is at most countable.
 (b) Does the statement still hold if D is replaced by an arbitrary topological space which has a countable basis ?
- 2. Show that a compact metric space is a complete metric space.
- 3. Let (S, \mathfrak{B}) be a measurable space, and μ_n a sequence of (positive) measures on this space. Show that $\mu(A) := \sum_{n=1}^{\infty} \mu(A), A \in \mathfrak{B}$, defines a measure.
- 4. Let $f: [0,1] \to \mathbb{R}$ be an integrable function. Show that $F(x) = \int_0^x f(t) dt$ is an absolutely continuous function.
- 5. Let $\Omega = \{z \in \mathbb{C} : |z| < 1\}$ and let f_n be a sequence of holomorphic functions such f_n converges uniformly on Ω . Does it follow that the derivatives f'_n converge uniformly on Ω ? What about the convergence of f'_n on compact subsets of Ω ?
- 6. Show that the infinite product

$$g(z) = e^{z\gamma} \prod_{k=1}^{\infty} \left(1 + \frac{z}{k}\right) e^{-z/k}$$

converges to an entire function, where γ is Euler's constant. Prove the recurrence

$$(z+1)g(z+1) = g(z).$$

7. Let $H = L^2[0,1]$ and $T: H \to H$ be the Volterra integral operator

$$(Tf)(x) = \int_0^x f(t) dt, \qquad 0 < x < 1,$$

- (a) Show that T has no nonzero eigenvalues.
- (b) Compute the adjoint of T.
- 8. Suppose E is a separable Banach space. Show that the unit ball B^* in E^* is compact in the weak-* topology.