1. Suppose that \(\{f_n\}_{n=1}^{\infty} \) is a sequence of monotonically increasing real-valued continuous functions on \([0, 1]\). Assume that \(f_n \) converges pointwise to a continuous function \(f \) on \([0, 1]\). Show that the family \(\{f_n\}_{n=1}^{\infty} \) is uniformly equi-continuous on \([0, 1]\).

2. Suppose that a sequence of real numbers \(x_n \) converges to a real number \(x_0 \). Show that
\[
\lim_{n \to \infty} \frac{x_1 + x_2 + \cdots + x_n}{n} = x.
\]

3. Let \(f : [0, 1]^2 \to \mathbb{R} \) be a function such that \(f(x, y) \) is Lebesgue integrable in \(x \) for each fixed \(y \), and differentiable in \(y \) for each fixed \(x \). Assume there is a Lebesgue integrable function \(g(x) \) such that \(\left| \frac{\partial f}{\partial y}(x, y) \right| \leq g(x) \) for every \(x, y \). Show that \(\psi(y) := \int_0^1 f(x, y) \, dx \) can be differentiated under the integral sign.

4. Let \(\mu \) and \(\nu \) be finite nonnegative measures on a measure space \((X, \mathcal{Q})\), such that \(\mu \ll \nu \). Let \(\frac{d\nu}{d(\mu+\nu)} \) stand for the Radon-Nykodim derivative of \(\nu \) with respect to \(\mu + \nu \). Show that
\[
0 < \frac{d\nu}{d(\mu+\nu)} < 1 \quad \text{[\(\mu \)]-a.e.}
\]

5. Suppose that \(X \) is a normed vector space and that \(W \) is a closed subspace in \(X \). Let \(x_0 \in X \). Assume that \(\phi(x_0) = 0 \) for all \(\phi \in X^* \) with \(N(\phi) \supseteq W \). Show that \(x_0 \in W \).

6. Suppose that \(C(\Omega) \) is the space of all continuous functions from a bounded connected and open domain \(\Omega \) in the Euclidean space \(\mathbb{R}^n \). Define a vector topology on the space \(C(\Omega) \) such that it becomes a Fréchet space. (Prove that it becomes a Fréchet space.)

7. State the Casorati-Weierstrass Theorem. Using it show that the only bi-holomorphic maps of \(\mathbb{C} \) to itself are mappings of the form \(f(z) = Az + B \).

8. Let \(\Omega \) be a connected open domain in \(\mathbb{C} \) and \(f \) be a holomorphic function on \(\Omega \) which does not vanish identically. Show that the zeros of \(f \) are isolated.