Analysis Preliminary Exam, Math @ UCSC, Winter 2016

- 1. Suppose that (X, d) is a metric space and that Aand B are disjoint closed subsets of X. Prove that there are two disjoint open subsets U and V of Xsuch that $A \subset U$ and $B \subset V$
- 2. Suppose that (X, d) is a complete metric space. We say that a subset A of X is of finite ϵ -net property if, for every $\epsilon > 0$, there are finitely many points $\{x_i\}_{i=1}^k$ from A such that $A \subset \bigcup_{i=1}^k B_{\epsilon}(x_i)$, where each $B_{\epsilon}(x_i)$ is the ball centered at x_i with radius ϵ . Prove that a closed subset A of X is Heine-Borel compact if and only if it is of finite ϵ -net property.
- 3. Suppose that for some $p \in (1, \infty)$, $f_n \in L^p([0, 1])$ and $||f_n||_p \leq 1$, uniformly in n. Assuming that $f_n(x) \to 0$ a.e.; prove that $f_n \to 0$ weakly in L^p .
- 4. Let X be an uncountable set and \mathcal{M} be the collection of all sets $E \subset X$ such that either E or E^c is at most countable. Define $\mu(E) = 0$ in the first case and $\mu(E) = 1$ in the second. Prove that \mathcal{M} is a σ -algebra and that μ is a measure on \mathcal{M} .
- 5. Let $A : X \to Y$ be an invertible bounded linear operator between Banach spaces X and Y. Show

that there exists an $\varepsilon > 0$ such that for all bounded linear operators $B : X \to Y$ with $||B|| < \varepsilon$, the operator A + B is invertible.

- 6. Let $A : X \to Y$ be a bounded linear operator (where X and Y are Banach spaces). Define the adjoint A^* and show that $||A|| = ||A^*||$.
- 7. Let

$$G(z) = z \prod_{k=1}^{\infty} \left(1 + \frac{z}{k} \right) e^{-z/k}$$

(a) Show that this infinite product defines an entire function.

(b) Where are the zeros of this function? Why? (c) Compute (in terms of G(z)) the limit

$$\lim_{N\to\infty} \frac{z(z+1)(z+2)\cdots(z+N)}{N!}\cdot N^{-z} \ .$$

8. Show that

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x\xi}}{\cosh \pi x} \, dx = \frac{1}{\cosh \pi \xi} \, .$$