Geometry-Topology Prelim, Winter 2011

1 (10 points). Is there a C^∞-map $f: [0, 1] \to \mathbb{R}^2$ whose image is the square $[0, 1] \times [0, 1]$?

2 (15 points). Let $f: \mathbb{R}P^2 \to \mathbb{R}^4$ be the map

$$f([x, y, z]) = (x^2 - y^2, yz, xz, xy),$$

where $\mathbb{R}P^2$ is viewed as the quotient of the unit sphere in \mathbb{R}^3 by the antipodal map. Is f an embedding?

3 (15 points). Let X and Y be vector fields on a smooth manifold. Prove that $[X, Y] = 0$ if and only if $\varphi_t^Y Y = Y$, where φ_t is the local flow of X.

4 (10 points). Let $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^l(M)$ be differential forms and let X be a vector field on M. Prove that

$$i_X(\alpha \wedge \beta) = (i_X \alpha) \wedge \beta + (-1)^k \alpha \wedge i_X \beta.$$

5 (10 points). Let Σ_g denote the sphere with g handles. (Thus, e.g., $\Sigma_1 = \mathbb{T}^2$.) Describe a $(g - 1)$-to-1 covering map $\Sigma_g \to \Sigma_2$, where $g \geq 2$.

6 (15 points). Prove that on a four-dimensional compact, connected, simply connected, closed manifold, every vector field has a zero.

7 (10 points). Find the curvature of the surface $z = 3x^2 - 5y^2$ at the point $(0, 0, 0)$.

8 (15 points). A Riemannian manifold is called homogeneous if the isometry group acts transitively. Prove that a homogeneous manifold is geodesically complete.