Prelim, Winter, 2012, in Differential Geometry and Topology. All problems are worth the same point value.

1. Consider vector fields $v_k = x^k \frac{\partial}{\partial x}$ on \mathbb{R} , where $k \ge 0$.

(a) Find the Lie bracket $[v_i, v_j]$.

(b) Do the flows of v_i and v_j commute?

(c) Find the flow of v_2 .

(d) Is v_2 complete on \mathbb{R} ?

2. (a) Prove that antipodal map on $S^n \to S^n$ given by $x \mapsto -x$ on the unit sphere S^n in \mathbb{R}^{n+1} is orientation preserving if and only if n is odd.

(b) Prove that the real projective space $\mathbb{R}P^n$ is orientable if and only n is odd.

3. A helicoid in \mathbb{R}^3 is parameterized $(s,t) \mapsto (s \cos t, s \sin t, t)$. Please compute the helicoid's:

a) first fundamental form

b) second fundamental form

c) Gaussian curvature

d) mean curvature

as functions of s, t.

4. A three-manifold M is framed by vector fields X, Y, Z. Let $\theta^1, \theta^2, \theta^3$ be the dual coframe to this frame. Suppose we know the Lie bracket relations

$$[X, Y] = -2Z,$$

$$[Y, Z] = X,$$

$$[Z, X] = Y.$$

Let $c_{jk}^i = -c_{kj}^i$ be the structure functions for this co-frame; thus: $d\theta^i = \Sigma c_{jk}^i \theta^j \wedge \theta^k$. (For example: $d\theta^1 = c_{23}^1 \theta^2 \wedge \theta^3 + c_{31}^1 \theta^3 \wedge \theta^1 + c_{12}^1 \theta^1 \wedge \theta^2$.)

a) Compute the structure functions.

b) True or False: Must M be a Lie group?

5. On the manifold $\mathbb{R}^2 \setminus \{0\}$, please:

a) Find a closed one-form that is not exact.

b) Show that any compactly supported closed one-form is exact. [The support of a differential form is the point set on which it does not vanish.]

6. Prove that every smooth map from S^3 to T^3 has degree 0.