Preliminary Examination in Geometry and Topology Winter 2013

All problems have the same point value.

- 1. Prove that for almost all pairs $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, with $x \neq y$ and n > 1, the line through x and y does not pass through the origin.
- 2. Show that Green's Theorem for regions in \mathbb{R}^2 with boundary consisting of a disjoint union of one or more circles is a consequence of Stokes' Theorem.
- 3. Let $f: M_1 \to M_2$ be a continuous map between oriented compact manifolds without boundary. The degree of f is the integer deg f defined by $f_*([M_1]) = (\deg f)[M_2]$, where $[M_1], [M_2]$ are the integral fundamental homology classes. Show that every map $S^{k+\ell} \to S^k \times S^\ell$ necessarily has degree zero.
- 4. Define the vector fields X and Y on \mathbb{R}^2 by

$$X(x,y) := y^2 \frac{\partial}{\partial x}$$
 and $Y(x,y) := x^2 \frac{\partial}{\partial y}$

Show that X and Y are complete, but X + Y is not.

- 5. Prove or provide a counterexample: Suppose M is a smooth manifold and and X and Y are smooth vector fields on M. If X and [X, Y] are tangent to a smooth submanifold N of M and the restrictions of X and [X, Y] to N are nonzero, then Y is also tangent to N.
- 6. Let T be the torus constructed by rotating the circle of radius 1 in the xz plane centered at (0,0,2) about the x axis. Which points in T have zero Gaussian curvature? What are the maximum and minimum of the Gaussian curvature on T?
- 7. Show that the Euler characteristic of a compact connected nontrivial Lie group is zero.