GEOMETRY AND TOPOLOGY PRELIMINARY EXAM

Winter 2014

[1] Define a map $F: S^2 \to \mathbb{R}^4$ by

$$F(x, y, z) = (x^2 - y^2, xy, yz, zx).$$

Show that F descends to a smooth embedding from $\mathbb{R}P^2$ into \mathbb{R}^4 .

[2] Prove that the complex projective space \mathbb{CP}^n is orientable for all n.

[3] Consider the following vector fields on \mathbb{R}^2 .

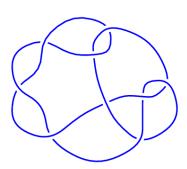
$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}, \qquad Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}, \qquad Z = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}.$$

(1) Draw the picture of flows generated by these vector fields.

(2) Show that the three dimensional vector space $V = \mathbb{R}X \oplus \mathbb{R}Y \oplus \mathbb{R}Z$ is closed under bracket. Write down all commutation relations.

[4] Consider a unit sphere and a torus so that the torus touches the sphere along the equator of the sphere. Call this space X. Let x_0 be a point on the equator. Compute the funbdamental group $\pi_1(X, x_0)$ and the homology group $H_*(X; \mathbb{Z})$.

[5] Let X be the compact surface spanning a knot given below. There are many possible such surfaces. Choose one and draw its picture. Let \widehat{X} be the closed surface obtained by capping X. Identify the surface \widehat{X} . Namely, find the genus and the orientability of \widehat{X} .



[6] Let (M,g) be Riemannian manifold and let f be a smooth function. Calculate the gradient $\nabla f = g^{-1}(df)$ in local coordinates.

[7] Show that a reparametrization $t \to \alpha(f(t))$ of a nonconstant geodesic α is again a geodesic if and only if f has the form f(t) = at + b for some constants a and b.

1